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Abstract

Designing effective behaviour with limited computational and sensory capabilities of small
robotic platforms can be quite challenging for a human user. Evolutionary Robotics is a
promising method to address this problem by allowing the robotic platform to autonomously
learn effective behaviour. Automated learning often results in unexpected solutions to tasks
utilising advanced sensory-motor coordination. This allows small and limited platforms to
perform complex tasks.

Evolutionary Robotics typically involves the optimization of artificial neural networks in
simulation to a solve a specific task. The advantage of such networks is that they provide dis-
tributed, parallel solutions, however, analysing and understanding evolved networks requires
considerable effort. Additionally, as simulation always differs to some degree from reality,
simulation based learning typically results in a reality gap between behaviour expressed in
simulation and that in the real world. This thesis aims to show that the Behaviour Tree
framework can be used to effectively express automatically developed robotic behaviour in
a readily comprehensible manner. We also show that this improved understanding of the
underlying behaviour can be used to reduce the reality gap when moving form simulation to
reality. In this paper we answer the research question:

How can a Behaviour Tree framework be used to develop an effective automatically generated
Artificial Intelligence UAV control system to reduce the reality gap of simulation trained
systems?

The DelFly flapping wing UAV was selected to investigate the Behaviour Tree approach. The
DelFly is tasked to fully autonomously navigate a room in search of a window which it must
then fly through using onboard capabilities only. This is the most complex task yet attempted
by the DelFly platform. The reality gap reduction is tested by first developing the behaviour
tree to solve this task automatically using Evolutionary Learning techniques in simulation.
This behaviour will then be applied to a real world DelFly and the user will be tasked with
adapting the behaviour to reduce the eventual reality gap. A user-defined behaviour is used
as a benchmark to compare the performance of genetically optimised behaviour.

The genetically optimised behaviour tree eventually contained only 8 behaviour nodes. The
behaviour resulted in a simulation based success rate of 88%, slightly better than the 22 node
user-defined behaviour at 82%. When moving the behaviour to the real platform, a large
reality gap was observed as the success rate dropped to almost nil. After user adaptation
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the genetically optimised behaviour had a success rate of 54%. Although this leaves room for
improvement, it is higher than 46% from a tuned user-defined controller.

In this thesis we show that it is feasible to evolve a behaviour tree in simulation and im-
plement that evolved behaviour on a real world platform. We also show that the improved
intelligibility of the Behaviour Tree behavioural encoding framework provides the user with
tools to effectively identify and reduce the resultant reality gap. Additionally, the genetically
optimised behaviour obtains a slightly better performance than a user-defined behaviour,
both in simulation and on the real platform.

This work has two main contributions, namely: a Behaviour Tree was implemented on a
airborne robotic platform to perform a window search and fly-through task all on the basis of
onboard sensors and processing and the ability to reduce the reality gap of robotic behaviour
using Behaviour Trees was effectively demonstrated. In essence, Behaviour Trees seem well
suited to represent behaviours of increasing complexity. Future research will tell whether it
can bring more complex tasks within reach of small and extremely limited robotic platforms.
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2-5 Graphical depiction of the Artificial Neural Network framework . . . . . . . . . . 32

2-6 DelFly obstacle avoidance FSM implementation as defined by de Croon et al. (2012) 33

2-7 DelFly obstacle avoidance FSM implementation as defined by Tijmons (2012) . 34

2-8 Berkeley fly-through-window set-up (Julian et al., 2013) . . . . . . . . . . . . . 34

3-1 DelFly Explorer in flight with the camera module in view . . . . . . . . . . . . . 36

3-2 Original images from left and right camera as well as the resultant disparity map
stereo image produced when DelFly aimed at a window in a wall from 4m distance 38

3-3 SmartUAV GUI showing an Advanced Flight Management System interaction
overview chart for the DelFly fly-through-window task . . . . . . . . . . . . . . . 42

3-4 UML class diagram of the Behaviour Tree framework for the DelFly . . . . . . . 42

4-1 Sample parent Behaviour Trees with selected nodes for crossover highlighted with
a box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4-2 Resulting children from crossover operation of parents shown in Figure 4-1 . . . 44

4-3 Flow diagram showing implementation of the Evolutionary Learning architecture
for Behaviour Tree evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4-4 Fitness function used to train the population in the Evolutionary Learning system 47

5-1 Schematic of test environment for the fly-through-window task . . . . . . . . . . 49

5-2 Texture used to decorate simulated flight test environment . . . . . . . . . . . . 50

5-3 Image of room from the origin with the window and DelFly and target window in
view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Behaviour Trees for Evolutionary Robotics K.Y.W. Scheper



xiv List of Figures

5-4 Graphical depiction of user-defined BT. Colours highlight different phases of the
flight. x is the position of the centre of the window in frame, σ is window response
value, Σ is sum of disparity and ∆ is the horizontal difference in disparity . . . . 51

5-5 Path of two flight initialisations of DelFly with the user-defined behaviour
(top-down view). Colours denote different decision modes: Green - window
tracking; Blue - default action in low disparity; Red - wall avoidance; Magenta
- action hold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5-6 Progression of the fitness score of the best individual and the mean of the population 53

5-7 Progression of the number of nodes in the best performing tree and the mean of
the population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5-8 Graphical depiction of genetically optimised BT. Colours highlight different phases
of the flight. x is the position of the centre of the window in frame, σ is window
response value, Σ is sum of disparity and ∆ is the horizontal difference in disparity 54

5-9 Progression of validation score of the best individual of each generation . . . . . 54

5-10 Histogram showing the distribution of fitness performance of the genetically opti-
mised and user-defined behaviour for all initialisations of the validation . . . . . . 55

5-11 Path of two flight initialisations of DelFly with the genetically optimised behaviour
(top-down view). Colours denote different decision modes: Green - window track-
ing; Blue - default action in low disparity; Red - wall avoidance . . . . . . . . . . 56

5-12 Distribution of secondary performance parameters for validation run . . . . . . . 57

5-13 Progression of the fitness score of the best individual and the mean of the popu-
lation throughout the genetic optimisation . . . . . . . . . . . . . . . . . . . . . 59

5-14 Progression of the number of nodes in the best tree and the mean of the population 60

5-15 Progression of validation score of the best individual of each generation . . . . . 60

5-16 Distribution of performance parameters for original and genetically optimised ver-
sions of the user-defined behaviour . . . . . . . . . . . . . . . . . . . . . . . . . 62

6-1 Photographs showing the room environment used to test the DelFly Explorer for
the fly-through-window task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6-2 Graphical depiction of user-defined BT after modification for real world flight. Red
boxes highlight updated nodes. x is the position of the centre of the window in
frame, σ is window response value, Σ is sum of disparity and ∆ is the horizontal
difference in disparity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6-3 Graphical depiction of genetically optimised BT after modification for real world
flight. Red boxes highlight updated nodes. x is the position of the centre of the
window in frame, σ is window response value, Σ is sum of disparity and ∆ is the
horizontal difference in disparity . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6-4 Distribution of secondary performance parameters from flight test . . . . . . . . 67

6-5 Flight path tracks of the last 7s of all flights for the user-defined behaviour . . . 68

6-6 Flight path tracks showing a sample failure and success flight case for the user
defined behaviour. Red track shows area where tracking system lost lock of the
DelFly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6-7 Flight path tracks of the last 7s of all flights for the genetically optimised behaviour 69

6-8 Flight path tracks showing sample failure and success flight case for the genetically
optimised behaviour. Red track shows area where tracking system lost lock of the
DelFly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A-1 Generalised representation of an agent (Russell & Norvig, 2009) . . . . . . . . . 78

K.Y.W. Scheper Behaviour Trees for Evolutionary Robotics



List of Figures xv

A-2 General model of a goal-based agent (Russell & Norvig, 2009) . . . . . . . . . . 79

A-3 General model of a utility-based agent (Russell & Norvig, 2009) . . . . . . . . . 80

A-4 General model of a learning agent (Russell & Norvig, 2009) . . . . . . . . . . . . 80

A-5 Graphical representation of Reinforcement Learning framework . . . . . . . . . . 82

A-6 Summary of metaheuristic search methods 1 . . . . . . . . . . . . . . . . . . . . 83

A-7 Typical decision tree diagram (Millington & Funge, 2009) . . . . . . . . . . . . . 87

A-8 Example of typical finite state machine (Millington & Funge, 2009) . . . . . . . 88

A-9 Example of state explosion in FSM (Millington & Funge, 2009) . . . . . . . . . . 88

A-10 Example of how HFSM can be used to address state explosion in FSM (Millington
& Funge, 2009) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A-11 A possible HTN task decomposition for building a house (Nau, 2007) . . . . . . 90

A-12 Overview of the paparazzi FCS (Paparazzi Community, 2013b) . . . . . . . . . . 91

B-1 Khepera vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

B-2 UML class diagram of the Behaviour Tree framework for the wheeled robotic vehicle
Khepera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

B-3 Path of the best individual in the last generation of the EL in an irregular room . 99

B-4 Average fitness and standard deviation of the best individual and the entire population100

B-5 Total number of nodes in the best individual and the average of the population . 100

Behaviour Trees for Evolutionary Robotics K.Y.W. Scheper



xvi List of Figures

K.Y.W. Scheper Behaviour Trees for Evolutionary Robotics



Chapter 1

Introduction

Designing effective behaviour to complete complex tasks for small robotic platforms is a major
challenge. Small vehicles with limited computational and sensory capabilities are becoming
more common place due to their ability to swarm and collaboratively achieve a task, this
however makes the task of a behavioural designer even harder. A promising method to address
this problem is found in Evolutionary Robotics (ER), a methodology in which a robot’s
controller, and possibly its body, is optimised using Evolutionary Learning (EL) techniques
(Nolfi & Floreano, 2000; Bongard, 2013). This approach often results in unconventional
methods which exploit sensory-motor coordination to achieve complex tasks (Nolfi, 2002).

Early investigations into ER performed EL optimisation on real robotic platforms but this
process is time consuming (Floreano & Mondada, 1994; Nolfi et al., 1994). With the ever
improving computing technologies, simulation based learning has become the predominant
method to evaluate ER, this however has some drawbacks of its own. Simulated environments
always differ to some degree from reality, artifacts from the simulation are sometimes exploited
by the EL optimisation solution strategy (Floreano & Mondada, 1994). As a result the
behaviour seen in simulation can often not be recreated on a real robotic platform resulting
in a reality gap (Nolfi et al., 1994; Jakobi et al., 1995).

Many methods have been investigated to reduce this reality gap and can be separated into
three main approaches (Bongard, 2013). The first approach investigates the influence of
simulation fidelity on the EL, with investigation focusing on the influence of adding differing
levels of noise to the robotic agent’s inputs and outputs (Jakobi et al., 1995; Miglino et al.,
1995; Meeden, 1998). It was shown that sufficient noise can deter the EL from exploiting
artifacts in the simulation but that this approach is generally not scalable as more simulation
runs are needed to distinguish between noise and true environmental features. The second
group focuses on co-evolution, this approach simultaneously develops a robotic controller
which is evaluated in simulation while the simulation model is updated using the perfor-
mance error with a real world robotic platform (Bongard et al., 2006; Zagal & Solar, 2007).
Alternatively, the error between the simulation and real world environment can be used to
estimate the suitability of a learnt behaviour on the real robot in a multi-objective function
to trade off simulated robotic performance and the transferability of the behaviour (Koos et
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2 Introduction

al., 2013). The final approach performs adaptation of the real robot behaviour after the EL
using relatively complex methods (Hartland & Bredèche, 2006).

One factor adding to the reality gap problem is that typically Artificial Neural Networks
(ANNs) are used as the encoding framework for the robot behaviour (Nolfi & Floreano,
2000). Although analysis of the evolved ANN is possible, this black-box framework does not
lend itself well to manual adaptation hence requiring complex retraining algorithms to bridge
the gap. Encoding the EL optimised behaviour in a more intelligible framework would aid a
user in understanding the solution strategy. It would also help to reduce the reality gap by
facilitating manual parameter adaptation for use on the real system.

Traditionally, user-defined autonomous behaviours are described using Finite State Machines
(FSMs) which has also been successfully used within ER (Petrovi, 2008; König et al., 2009;
Pintér-Bartha et al., 2012). FSMs are very useful for simple action sequences but quickly
become illegible as the tasks become more complex due to state explosion (Valmari, 1998;
Millington & Funge, 2009). This complexity makes it difficult for developers to modify and
maintain the behaviour of the autonomous agents. A more recently developed method to
describe behaviour is the Behaviour Tree (BT). Initially developed as a method to formally
define system design requirements the BT framework was adapted by the computer gaming
industry to control Non-Player Characters (NPCs) (Dromey, 2003; Champandard, 2007). BTs
do not consider states and transitions the way FSMs do, rather they consider self contained
behaviour made up of a hierarchical network of actions (Champandard, 2007; Heckel et
al., 2010). The rooted tree structure of the BT make the encapsulated behaviour readily
intelligible for users given that the trees are not too large. Previous work on evolving BTs
has been applied to computer game environments where the state is fully known to the BT
and actions have deterministic outcomes (Lim et al., 2010; Perez et al., 2011). BTs have not
yet been applied to a real world robotic task. Such a task involves complicating factors such
as state and action uncertainty, delays, and other properties of a non-deterministic and not
fully known environment.

In this thesis, we perform the first investigation into the use of Behaviour Trees in Evolu-
tionary Robotics. The DelFly Explorer flapping wing robotic platform has been selected to
demonstrate the efficacy of the BT approach to reduce the reality gap. The DelFly is tasked
to navigate a square room in search for an open window which it must fly through using
onboard systems only. This is the most complex autonomous task yet attempted with the
20g flight platform.

1-1 Research Questions

The main goal of this thesis can be expressed in the following research question:

How can a Behaviour Tree framework be used to develop an effective automatically generated
Artificial Intelligence UAV control system to reduce the reality gap of simulation trained
systems?

This research question can be answered by the sum of the answers to the following research
questions:

RQ1 What Behaviour Tree nodes will be used to implement the guidance system for the
fly-through-window task?

K.Y.W. Scheper Behaviour Trees for Evolutionary Robotics
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RQ2 What inputs and outputs will be used by BT to interface with the UAV for the
fly-through-window task?

RQ3 How will the Evolutionary Leaning operators be applied to the Behaviour Tree?

RQ4 What operating parameters will be used for the genetic optimisation to converge on
a solution?

RQ5 How will the mission management system performance be evaluated?

RQ6 What is the performance of the learned mission management system as compared to
a human designer?

RQ7 Can the the reality gap be reduced using the BT framework?

1-2 Thesis Layout

The first part of this thesis will summarise the methodology, implementation and results of
this work in a scientific paper format. The second part will go more into more detail about
the implementation and theoretical background.

To answer these research questions we will first discuss some detailed background information
of many of the conceptual components of this work. This will be followed by a description to
the implementation of the Behaviour Tree on the DelFly platform will be given in Chapter 3.
Next, Chapter 4 describes the implementation of the EL method followed by the results of the
genetic optimisation in Chapter 5. Chapter 6 presents the implementation of the Behaviour
Tree framework onboard the DelFly and the results of the real world flight tests respectively.
The work done in this thesis is then summarised in a conclusion and some recommendations
are presented.

Behaviour Trees for Evolutionary Robotics K.Y.W. Scheper
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Behaviour Trees for Evolutionary Robotics
K.Y.W. Scheper, S. Tijmons, C.C. de Visser, and G.C.H.E. de Croon

Abstract—Evolutionary Robotics allows robots with limited
sensors and processing to tackle complex tasks by means of
creative sensory-motor coordination. In this paper we show
the first application of the Behaviour Tree framework to a
real robotic platform. This framework is used to improve the
intelligibility of the emergent robotic behaviour as compared
to the traditional Neural Network formulation. As a result,
the behaviour is easier to comprehend and manually adapt
when crossing the reality gap from simulation to reality. This
functionality is shown by performing real-world flight tests with
the 20-gram DelFly Explorer flapping wing UAV equipped with a
4-gram onboard stereo vision system. The experiments show that
the DelFly can fully autonomously search for and fly through
a window with only its onboard sensors and processing. The
simulation success rate is 88%, this resulted in a real-world
performance of 54% after necessary user adaptation. Although
this leaves room for improvement, it is higher than 46% from a
tuned user-defined controller.

Index Terms—Behaviour Tree, Evolutionary Robotics, Reality
Gap, UAV

I. INTRODUCTION

DESIGNING effective behaviour to complete complex
tasks for small robotic platforms is a major challenge.

Small vehicles with limited computational and sensory ca-
pabilities are becoming more common place due to their
ability to swarm and collaboratively achieve a task, this
however makes the task of a behavioural designer even harder.
A promising method to address this problem is found in
Evolutionary Robotics (ER) is a methodology in which a
robot’s controller, and possibly its body, is optimised using
Evolutionary Learning (EL) techniques [1], [2]. This approach
often results in unexpected solutions which exploit sensory-
motor coordination to achieve complex tasks [3].
Early investigations into ER used online EL but this process

is time consuming [4], [5]. With the ever improving comput-
ing technologies, simulation based learning has become the
predominant method to evaluate ER, this however has some
drawbacks of its own. Simulated environments always differ
to some degree from reality, artifacts from the simulation are
sometimes exploited by the EL optimisation solution strategy
[4]. As a result the behaviour seen in simulation can often not
be recreated on a real robotic platform resulting in a reality
gap [5], [6].
Many methods have been investigated to reduce this reality

gap and can be separated into three main approaches [2]. The
first approach investigates the influence of simulation fidelity
on the EL, with investigation focusing on the influence of
adding differing levels of noise to the robotic agent’s inputs
and outputs [6]–[8]. It was shown that sufficient noise can
deter the EL from exploiting artifacts in the simulation but

All authors are with the Faculty of Aerospace, Delft University, 2629 HS
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that this approach is generally not scalable as more simulation
runs are needed to distinguish between noise and true envi-
ronmental features. The second group focuses on co-evolution,
this approach simultaneously develops a robotic controller
which is evaluated in simulation while the simulation model
is updated using the performance error with a real world
robotic platform [9], [10]. Alternatively, the error between
the simulation and real world environment can be used to
estimate the suitability of a learnt behaviour on the real robot
in a multi-objective function to trade off simulated robotic
performance and the transferability of the behaviour [11]. The
final approach performs adaptation of the real robot behaviour
after the EL using relatively complex methods [12].
One factor adding to the reality gap problem is that typically

Artificial Neural Networks (ANNs) are used as the encoding
framework for the robot behaviour [1]. Although analysis
of the evolved ANN is possible, this black-box framework
does not lend itself well to manual adaptation hence requiring
complex retraining algorithms to bridge the gap. Encoding
the EL optimised behaviour in a more intelligible framework
would aid a user in understanding the solution strategy. It
would also help to reduce the reality gap by facilitating manual
parameter adaptation for use on the real system.
Traditionally, user-defined autonomous behaviours are de-

scribed using Finite State Machines (FSMs) which has also
been successfully used within ER [13]–[15]. FSMs are very
useful for simple action sequences but quickly become illegi-
ble as the tasks become more complex due to state explosion
[16], [17]. This complexity makes it difficult for developers to
modify and maintain the behaviour of the autonomous agents.
A more recently developed method to describe behaviour is
the Behaviour Tree (BT). Initially developed as a method to
formally define system design requirements the BT framework
was adapted by the computer gaming industry to control Non-
Player Characters (NPCs) [18], [19]. BTs do not consider
states and transitions the way FSMs do, rather they consider
self contained behaviour made up of a hierarchical network of
actions [19], [20]. The rooted tree structure of the BT make the
encapsulated behaviour readily intelligible for users given that
the trees are not too large. Previous work on evolving BTs has
been applied to computer game environments where the state is
fully known to the BT and actions have deterministic outcomes
[21], [22]. BTs have not yet been applied to a real world
robotic task. Such a task involves complicating factors such
as state and action uncertainty, delays, and other properties of
a non-deterministic and not fully known environment.
In this paper, we perform the first investigation into the

use of Behaviour Trees in Evolutionary Robotics. We will
first give a description of the DelFly Explorer flapping wing
robotic platform selected to demonstrate our approach. This is
followed by a description how offline EL techniques are used
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to automatically develop BTs. We will then show the efficacy
of this automatically generated behaviour by comparing it to
one designed by a human user. The implementation of both
behaviours on the real world DelFly Explorer flight platform
will be described to investigate if the reality gap can indeed be
actively reduced by a user as a result of the legible behaviour
expressed using the proposed method.

II. DELFLY FLY-THROUGH-WINDOW

The limited computational and sensory capabilities of the
DelFly Explorer makes it difficult to design even the most
simple behaviour. This makes it an ideal candidate for the
implementation of ER. In this paper, the DelFly Explorer is
tasked to navigate a square room in search for an open window
which it must fly through using onboard systems only. This
is the most complex autonomous task yet attempted with the
20g flight platform.
Other applications with flapping wing flight platforms in-

clude using the H2Bird 13g flapping wing Unmanned Aerial
Vehicle (UAV) for a fly-through-window task [23]. Unlike
the DelFly Explorer, the H2Bird used a ground based camera
and off-board image processing to generate heading set-points.
Developing the algorithms to safely avoid crashing into the
walls and other obstacles while searching and attempting to
fly through a window is a non-trivial task. In-fact, the fly-
through-window task is the most complex task to date for the
DelFly Explorer.

A. DelFly Explorer

The DelFly is an insect-inspired flapping-wing UAV de-
veloped at the Delft University of Technology (DUT). The
main feature of its design is its biplane-wing configuration
which flap in anti-phase [24]. The DelFly Explorer is a recent
iteration of this micro ornithopter design [25]. In its typical
configuration, the DelFly Explorer is 20g and has a wing span
of 28cm. In addition to its 9 minute flight time, the DelFly
Explorer has a large flight envelope ranging from maximum
forward flight speed of 7m/s, hover, and a maximum back-
ward flight speed of 1m/s. A photo of the DelFly Explorer
can be seen below in Figure 1.
The main payload of the DelFly Explorer is a pair of

light weight cameras used to perform onboard vision based
navigation as shown in Figure 1. Each camera is set to a
resolution of 128×96 pixels with a field of view of 60◦×45◦

respectively. The cameras are spaced 7cm apart facilitating
stereo-optic vision. Using computer vision techniques these
images can be used to generate depth perception with a method
called Stereo Vision [26]. This makes the DelFly Explorer
the first flapping wing UAV that can perform active obstacle
avoidance using onboard sensors facilitating fully autonomous
flight in unknown environments [25].

B. Vision Systems

1) LongSeq Stereo Vision: The DelFly Explorer uses a
Stereo Vision algorithm called LongSeq to extract depth in-
formation of the environment from its two onboard optical

Fig. 1. DelFly Explorer in flight showing dual camera payload

cameras [25]. The main principle in computer vision based
stereo vision is to determine which pixel corresponds to the
same physical object in two or more images. The apparent
shift in location of the the pixels is referred to as the disparity.
The stereo vision algorithm produces a disparity map of all
pixels in the images [26].
LongSeq is a localised line based search stereo vision

algorithm. This is one candidate which results of the trade-
off between computational complexity and image performance
made by all image processing algorithms. The relatively low
computational and memory requirements of LongSeq makes it
a good candidate for application on the limited computational
hardware onboard the DelFly Explorer.
2) Window Detection: An Integral Image window detection

algorithm is used to aid the UAV in the fly-through-window
task. Integral image detection is a high speed pattern recog-
nition algorithm which can be used to identify features in a
pixel intensity map [27], [28]. The integral image (II(x, y))
is computed as

II(x, y) =
�

x′≤x,y′≤y

I(x′, y′) (1)

where x and y are pixel locations in the image I . As each
point of the integral image is a summation of all pixels above
and to the left of it, the sum of any rectangular subsection is
simplified to the following computation

rect(x, y, w, h) =II(x+ w, y + h) + II(x, y)

− II(x+ w, h)− II(x, y + h)
(2)

This method has been used to identify a dark window in a light
environment by using cascaded classifiers [29]. This applica-
tion was designed specifically to operate when approaching a
building in the day time on a light day. A more generalised
method is to apply the same technique described above to
the disparity map rather than the original camera images.
The disparity map would show a window as an area of low
disparity (dark) in an environment of higher disparity (light).
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C. SmartUAV Simulation Platform

SmartUAV is a Flight Control Software (FCS) and simula-
tion platform developed in house at the DUT [30]. It is used
primarily with small and micro sized aerial vehicles and it
notably includes a detailed 3D representation of the simulation
environment which is used to test vision based algorithms.
It can be used as a ground station to control and monitor
a single UAV or swarms of many UAVs. As a simulation
platform to test advanced Guidance Navigation and Control
(GNC) techniques. As a tool developed in-house, designers
have freedom to adapt or change the operating computer code
at will, making it very suitable for use in research projects.
SmartUAV contains a large visual simulation suite which

actively renders the 3D environment around the vehicle.
OpenGL libraries are used to generate images on the PC’s
GPU increasing SmartUAV’s simulation fidelity without sig-
nificant computational complexity. As a result high fidelity 3D
environments can be used allowing the vision based algorithms
to be tested with a high level of realism.
In terms of the larger SmartUAV simulation, the vision

based calculations are the most computationally intensive
portion making it the limiting factor for the speed of operation
of the wider decision process. The higher the decision loop
frequency relative to the flight dynamics the longer a single
simulation will take. This must be balanced by the frequency at
which the DelFly is given control instructions, where generally
higher is better. Considering this trade-off the decision loop
was set to run at 5Hz relative to the flight dynamics loop.
This is a conservative estimate of the actual performance of
the vision systems onboard the real DelFly Explorer.

D. Simplified DelFly Model

The DelFly Explorer is a newly developed platform and
its flight dynamics have not yet been investigated in depth.
As a result an existing model of the DelFly II previously
implemented based on the intuition of the DelFly designers
will be used in this work. This model is not a fully accurate
representation of the true DelFly II dynamics but was sufficient
for most vision based simulations previously carried out. In
this work, the inaccuracy of the model will intentionally create
a reality gap between the simulated dynamics of the DelFly
and reality. We will briefly summarise the dynamics used in
simulation below.
The DelFly II has three control inputs, namely: Elevator

(δe), Rudder (δr) and Thrust (δt). The elevator and rudder
simply set the control surface deflection and the thrust sets the
flapping speed. The actuator dynamics of the DelFly for the
rudder actuator were implemented using a time delay, defined
as:

δ̇r = δrmax
(ur − δr); ur : [−1, 1] (3)

where ur is the rudder input and δrmax
is the maximum

rudder deflection. This results in a rudder transfer function
with a rise time of 2.2s and settling time of 3.9s The elevator
deflection and thrust setting are simply mapped directly from

the control input with the following equation:
�

δe
δt

�

=

�

δemax
0

0 1

2

� �

ue

ut + 1

�

; ue, ut : [−1, 1] (4)

where ue and ut are the elevator and thrust input respec-
tively and δemax

is the maximum elevator deflection. The pitch
(θ), yaw (ψ) and flight velocity (V ) dynamics of the DelFly
are updated as:
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(5)

Things to note are there is no coupling in the flight modes
of the simulated DelFly. For this research, the throttle setting
was constant at trim position resulting in a flight velocity
of 0.5m/s. Additionally, the maximum turn rate was set to
0.4rad/s resulting in a minimum turn radius of 1.25m. The
roll angle (φ) of the DelFly is simply a function of the rudder
setting as in (6).

φ =
1

2
δr (6)

There are some notable differences between the DelFly II
and DelFly Explorer, firstly the Explorer replaces the rudder
with a pair of ailerons to roll the DelFly without inducing
yaw, this helps to stabilise the captured images. Additionally,
the DelFly Explorer is 4g heavier and has a slightly higher
wing flapping speed. The flight dynamics described above are
very simple and not fully representative of the complex flight
dynamics involved with the flapping wing flight of the DelFly
platform. As a result a large reality gap is expected when
moving from the simulation to reality.

III. BEHAVIOUR TREE IMPLEMENTATION

BTs are depth-first, ordered Directed Acyclic Graphs
(DAGs) used to represent a decision process. DAGs are
composed of a number of nodes with directed edges. Each
edge connects one node to another such that starting at the
root there is no way to follow a sequence of edges to return
to the root. Unlike FSMs, BTs consider achieving a goal by
recursively simplifying the goal into tasks similar to that seen
in the Hierarchical Task Network (HTN). This hierarchy and
recursive action make the BT a powerful way to describe
complex behaviour.

A. Syntax and Semantics

A BT is syntactically represented as a rooted tree structure,
constructed from a variety of nodes each with its individual
internal function but all nodes have the same external interface.
Each node in a BT has a return status. Generally, the return
statuses are either Success or Failure. The status Success is
the status of a node that has been successfully executed.
Inversely, the status Failure is used when a node has failed
during execution. This however does not define the condition
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Fig. 2. Graphical depiction of user-defined BT for the fly-through-window
task. Colours highlight different phases of the flight. x is the position of the
centre of the window in frame, σ is window response value, Σ is sum of
disparity and Δ is the horizontal difference in disparity

under which the node failed, some implementations include
an Exception or Error status to provide this information.
Basic BTs are made up of three kinds of nodes: Conditions,

Actions and Composites [19]. Conditions and Actions make up
the leaf nodes of the BT whilst the branches consist of Com-
posite nodes. Conditions test some property of the environment
returning Success if the conditions are met and returns Failure
otherwise. The agent acts on its environment through Action
nodes. Leaf nodes must be individually developed to perform
specific tasks but can be reused readily in the tree as required.
Composite nodes are not platform dependent and can be reused
in any BT. All the nodes in the BT use a similar interface so
that arbitrary combination of these nodes is possible in the
BT without knowledge of any other part of the BT making
BTs more modular and reusable. A sample BT highlighting
the graphical representation of the different nodes can be seen
in Figure 2.
As the branches of the BT, Composite nodes determine

how the BT is executed. Unlike Conditions and Actions, not
many types of Composite nodes are needed as combinations
of these simple nodes can achieve very complex behaviour.
Although many different types can be used, we will only
consider Sequences and Selectors in this paper. The Root node
of a BT is typically a Selector node that has no parent.
Selectors return Success when one of its children return

Success and Failure when all of its children return Failure.
Conversely, Sequences will return Failure when one of its
children fails and Success if all of its children return Success.
Both of these nodes evaluate their children in order graphically
represented from left to right.
The execution of the behaviour tree is referred to as a tick. A

tick starts from the root node which is typically a selector node
and evaluates down the tree starting at the left most node. An
execution is complete when a branch of the root node returns
success or all of its branches return failure.

B. DelFly Implementation

Aside from the generic Sequence and Selector Compos-
ite nodes, two condition nodes and one action node were
developed for the DelFly, namely: greater than; less than
and; turnRate. These behaviour nodes are accompanied by a
Blackboard which was developed to share information with
the BT

The Blackboard architecture implemented for the DelFly to
add data to the BT, containing five entries: window x location
(x), window response (σ), sum of disparity (Σ), horizontal
disparity difference (Δ) and turn rate (r). This variable map
is available to all nodes in the BT, the first four are condition
variables which are set at the input of the BT and the last item
is used to set the BT output.
The conditions have two internal constants which are set

on their initialisation: one sets which Blackboard variable is
to be evaluated and the other is the threshold to be tested. As
the names suggest, greater than and less than have boolean
returns as to whether a variable input is greater than or less
than the threshold respectively. The Action node turnRate sets
the DelFly rudder input directly.

C. User Designed Behaviour Tree

A human designed behaviour was designed which would be
used as a control in comparison to the genetically optimised
solution. The designed tree had 22 nodes and the structure of
the BT as shown in Figure 2. The behaviour is made up of
four main parts:
• window tracking based on window response and location

in frame - try to keep the window in the centre of the
frame

• go straight default action if disparity very low - helps
when looking directly through window into next room

• wall avoidance when high disparity - bidirectional turns
to avoid collisions with walls, also helps to search for
window

• action hold when disparity very high - ensures the
chosen action is not changed when already evading a wall

After validation of the behaviour, it was observed that for
250 random initialisations in the simulated environment, the
behaviour had a resultant success rate of 82%. This behaviour
is good but suffers from one main flaw which was observed
during the validation. The bidirectional wall avoidance in a
square room results that the DelFly can be caught in corners.
There are many methods to correct for this behaviour but as
this is typical conceptual feature typical with human designed
systems we will use this behaviour as a baseline for the
comparison later. Figure 3 shows the path of successful and
unsuccessful flight initialisations of DelFly with the user-
defined behaviour.

IV. EVOLUTIONARY LEARNING INCORPORATION

EL is a metaheuristic global optimisation method which
imitates nature’s mechanism of evolution [31]–[33]. Feasible
solutions for a particular problem are equivalent to members
of a particular species, where the fitness of each individual
is measured by some user-defined, problem specific, objective
function. For each generation of a Genetic Algorithms (GA),
the current population consists of a set of trial solutions cur-
rently under consideration. Successful individuals are selected
to share their genes to create the next population using the
genetic recombination method crossover. This combination of
genes from the fittest parents is a form of exploitation where
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Fig. 3. Path of successful and unsuccessful flight initialisations of DelFly with
the user-defined behaviour (top-down view). Colours denote different decision
modes: Green - window tracking; Blue - default action in low disparity; Red
- wall avoidance; Magenta - action hold

the emerging policy tends towards the best policy. Each child
may also be subject to mutation where individual parts of their
genes are changed. This introduces variation in the population
which results in greater exploration of search space [34].
There are many implementations on EL each with a unique

method to encode the genetic material in the individuals. GAs
use binary strings [31], [32], Genetic Programming (GP) use
LISt Processing (LISP) in a graph-like representation [35] and
Neuroevolution techniques use ANNs [36]. In this paper we
will use the EL to optimise the behaviour for a task using the
BT framework. The custom implementation of EL for BTs
used in this work is described below.

A. Genetic Operators

a) Initialisation: The initial population of M individuals
is generated using the grow method [35]. This results in
variable length trees where every Composite node is initialised
with its maximum number of children and the tree is limited by
some maximum tree depth. This provides an initial population
of very different tree shapes with diverse genetic material to
improve the chance of a good EL search.

b) Selection: A custom implementation of Tournament
Selection is used in this paper [37]. This is implemented by
first randomly selecting a subgroup of s individuals from the
population. This subgroup is then sorted in order of their
fitness. If two individuals have the same fitness they are then
ranked based on tree size, where smaller is better. The best
individual is typically returned unless the second individual is
smaller, in which case the second individual is returned. This
was done to introduce a constant pressure on reducing the size
of the BTs.

c) Crossover: As the tournament selection returns one
individual, two tournaments are needed to produce two parents
needed to perform crossover. The percentage of the new
population formed by Crossover is defined by the Crossover
Rate Pc. Crossover is implemented as the exchange of one

Fig. 4. Sample parent trees with selected nodes for crossover highlighted

Fig. 5. Children of crossover of parents in Figure 4

randomly selected node from two parents to produce two
children. The node is selected totally at random independent
of its type or its location in the tree. Figure 4 and Figure 5
graphically shows this process.

d) Mutation: Mutation is implemented with two meth-
ods, namely: micro-mutation and; Macro-mutation also re-
ferred to as Headless Chicken Crossover [38]. Micro-mutation
only affects leaf nodes and is implemented as a reinitialisation
of the node with new operating parameters. Macro-mutation
is implemented by replacing a selected node by a randomly
generated tree which is limited in depth by the maximum tree
depth. The probability that mutation is applied to a node in the
BT is given by the mutation rate Pm. once a node has been
selected for mutation the probability that macro-mutation will
be applied rather than micro-mutation is given by the headless-
chicken crossover rate Phcc.

e) Stopping Rule: An important parameter in EL is when
to stop the evolutionary process. Evolutionary computing is
typically computationally intensive due to the large number
of simulations required to evaluate the performance of the
population of individuals. Placing a limit on the maximum
number of generations can help avoid unnecessary long com-
putational time. Additionally, like many learning methods,
genetic optimisation can be affected by overtraining.
For these reasons, the genetic optimisation has a maximum

number of generations (G) at which the optimisation will be
stopped. Additionally, when the trees are sufficiently small to
be intelligible, the process can be stopped by the user.

B. Fitness Function

The two main performance metrics used to evaluate the
DelFly in the fly-through-window task are: Success Rate and
Tree Size. Some secondary parameters that are not vital to
the performance of the DelFly that define the suitability of its
behaviour are: Angle of Window Entry, Time to Success and
Distance from Centre of Window at Fly-Through.
The fitness function was chosen to encourage the EL to

converge on a population that flies through the window as
often as possible. After trying several differing forms of fitness
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Fig. 6. Patterns used to increase the realism and texture of test environment.
From left to right: multi-coloured stone for walls, dark grey textured carpet
for floors and light grey concrete texture for ceiling

functions a discontinuous function was chosen such that a
maximum score is received if the UAV flies through the
window and a score inversely proportional to its distance to
the window if not successful. The fitness F is defined as:

F =

�

1 if success
1

1+3|e| else
(7)

where success is defined as flying through the window and e
is the vector from the centre of the window to the location of
the UAV at the end of the simulation.

V. DELFLY TASK OPTIMISATION

A. Simulated 3D Environment

The environment chosen to train the UAV in simulation was
an 8 × 8 × 3m room with textured walls, floor and ceiling.
A 0.8 × 0.8m window was placed in the centre of one wall.
Another identical room was placed on the other side of the
windowed wall to ensure the stereo algorithm had sufficient
texture to generate matches for the disparity map when looking
through the window.
As it is not the focus of this research to focus on the vision

systems to allow the stereo vision algorithm some texture, a
multi-coloured stone texture pattern was used for the walls, a
wood pattern was used for the floor and a concrete pattern used
for the ceiling as shown in Figure 6. The identically textured
walls ensure that the behaviour must identify the window and
not any other features to aid in its task.

B. Experimental Setup

As the DelFly must fly through the window as often as
possible, to evaluate this we will simulate the DelFly multiple
times per generation to better estimate its generalised perfor-
mance. Each generation has k simulation runs to evaluate the
performance of each individual. Each run is characterised by
a randomly initiated location in the room and a random initial
pointing direction. Individual initial conditions are held over
multiple generations until the elite members of the population
(characterised by Pe) are all successful after which the initial
condition in question is replaced by a new random initial-
isation. Each simulation run is terminated when the DelFly
crashes, flies through the window or exceeded a maximum
simulation time of 100s.
The characteristic parameters are shown in Table II. These

values were chosen after observing the effect of the parameters
after several runs of the EL.

TABLE I
TABLE SHOWING PARAMETER VALUES FOR THE EVOLUTIONARY

LEARNING OPTIMISATION RUN

Parameter Value
Max Number of Generations (G) 150
Population size (M ) 100
Tournament selection size (s) 6%
Elitism rate (Pe) 4%
Crossover rate (Pc) 80%
Mutation rate (Pm) 20%
Headless-Chicken Crossover rate (Phcc) 20%
Maximum tree depth (Dd) 6
Maximum children (Dc) 6
No. of simulation runs per generation (k) 6
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Fig. 7. Progression of the fitness score of the best individual and the mean
of the population throughout the genetic optimisation

C. Optimisation Results

The main parameter which dictates the progress of the
genetic optimisation is the mean fitness of the individuals in
the population. Figure 7 shows the population mean fitness
as well as the mean fitness of the best individual in each
generation. It can be seen in Figure 7 that at least one member
of the population is quickly bred to fly through the window
quite often. Additionally, as the the generations progress and
new initialisations are introduced the trees have to adjust
their behaviour to be more generalised. The mean fitness also
improves initially then settles out at around the 0.4 mark, the
fact that this value doesn’t continue to increase suggests that
the genetic diversity in the pool is sufficient.
The other main parameter which defines the proficiency of

the BTs is the tree size. The mean tree size of the population as
well as the tree size of the best individual from each generation
is shown below in Figure 8.
This figure shows that the average tree size began at about

5000 nodes and initially increases to 7000 before steadily
dropping to around 1000 nodes around generation 50. The
trees size then slowly continues to reduce in size and eventu-
ally drops below 150 nodes. The best individual in the popu-
lation oscillated around this mean value. The best individual
after 150 generations had 32 nodes. Pruning this final BT,
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Fig. 9. Graphical depiction of genetically optimised BT. Colours highlight
different phases of the flight x is the position of the centre of the window
in frame, σ is window response value, Σ is sum of disparity and Δ is the
horizontal difference in disparity
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Fig. 10. Progression of validation score of the best individual of each
generation

removing redundant nodes that have no effect on the final
behaviour, resulted in a tree with 8 nodes. The structure of
the tree can be seen graphically in Figure 9.
The optimised BT was put through the same validation set

as used with the user-defined resulting in a success rate of
88%. Figure 10 shows the progression of the validation success
rate for the best individual of each generation. It can be seen
that the score quickly increases and oscillates around about
80% success. In early generations the variation of success rate
from one generation to the next is larger than later generations.
Figure 8 and Figure 10 suggest that that the population

quickly converges to a viable solution and then continues to
rearrange the tree structure to result in ever smaller trees.

TABLE II
SUMMARY OF VALIDATION RESULTS

Parameter user-defined genetically optimised
Success Rate 82% 88%
Tree size 26 8
Mean flight time [s] 32 40
Mean approach angle [◦] 21 34
Mean distance to centre [m] 0.08 0.15
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Fig. 11. Path of successful and unsuccessful flight initialisations of DelFly
with the genetically optimised behaviour (top-down view). Colours denote
different decision modes: Green - window tracking; Blue - default action in
low disparity; Red - wall avoidance

The fact that the best individual of each population does not
improve much above the 80% mark possibly identifies that
the method used to expose the population to a generalised
environment is not sufficient. A method to make the initial
conditions more ”difficult” is by employing co-evolution of the
initialisation as well as the robotic behaviour. This predator-
prey type co-evolution may improve results. Alternatively, the
fact that the behaviour does not continue to improve may also
indicate that the sensory inputs used b the DelFly are not
sufficient.

The performance characteristics of the best individual from
the optimisation as compared to those from the user-defined
BT is summarised below in Table II. The optimised BT has
slightly higher success rate than the user-defined BT but with
significantly less nodes. The mean fitness is also slightly
higher with the optimised BT.

The successful flight shown in Figure 11 shows that the
behaviour correctly avoids collision with the wall, makes its
way to the centre of the room and then tracks into the window.
Analysing the BT from Figure 9, the logic to fly through the
window is very simple, the tree can be separated into three
phases:

• slight right turn default action when disparity low
• max right turn to evade walls if disparity high (unidi-

rectional avoidance)
• if window detected make a moderate left turn

This very simple behaviour seems to have very good success
however Figure 11 also highlights one pitfall of this solution.
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Fig. 12. Photograph showing the room environment used to test the DelFly
Explorer for the fly-through-window task. Inset is collage of DelFly as it
approaches and flies through window

As the behaviour doesn’t use the location of the window in
the frame for its guidance it is possible to drift off centre and
lose the window in frame and enter a wall avoidance turn quite
close to the wall resulting in a collision.
These results show that based on the given fitness function

and optimisation parameters the genetic optimisation was very
successful. The resultant BT was both smaller and better
performing than the user-defined tree.

VI. DELFLY ONBOARD FLIGHT TESTING

The BT was implemented on the camera module of the
DelFly Explorer which is equipped with a STM32F405 proces-
sor operating at 168MHz with 192kB RAM. This processor
is programmed in the C programming language as opposed
to the C++ implementation used in simulation. As a result a
slightly simplified version of the BT system was implemented
onboard.
The BT node is placed in series with the stereo vision and

window detection algorithms and was found to run at ∼12Hz.
The commands were sent from the camera module to the
DelFly Explorer flight control computer using serial commu-
nication. The DelFly flight control computer implements these
commands in a control system operating at 100Hz.

A. Test 3D Environment
The environment designed to test the UAV was a 5× 5× 2

m room with textured walls. The floor was simply a concrete
floor and the ceiling was left open. A 0.8×0.8 m window was
placed in the centre of one wall. The area behind the window
was a regular textured area. As the focus of this work is on
investigating the development behaviour of the DelFly and not
on the vision systems themselves, we added artificial texture
to the environment to ensure we had good stereo images from
the DelFly Explorer onboard systems. This texture was in the
form of newspapers draped over the walls at random intervals.
Sample photographs of the room can be seen below in Figure
12.

B. Experiment Set-up
At the beginning of each run, the DelFly will initially

be flown manually to ensure it is correctly trimmed for

flight. It will then be flown to a random initial position and
pointing direction in the room. At this point the DelFly will
be commanded to go autonomous where the DelFly flight
computer implements the commands received from the BT.
The flight will continue until the DelFly either succeeds in
flying through the window, crashes or the test takes longer
than 60s. As the BT controls the horizontal dynamics only,
the altitude is actively controlled by the user during flight, this
was maintained around the height of the centre of the window.
All flights are recorded by video camera as well as an

Optitrack vision based motion tracking system [39]. The
motion tracking system was used to track the DelFly as it
approached and flew through the window to determine some of
the same metrics of performance that were used in simulation.
As a result, information on the success rate, flight time, angle
of approach and offset to the centre of the window can be
determined.

VII. FLIGHT TEST RESULTS

The flight speed of the DelFly was set to ∼0.5m/s, the same
as was used in simulation apart from this however there were
significant differences observed between the DelFly simulated
in SmartUAV and the DelFly used in the flight tests. The
most significant was that the maximum turn radius was ∼0.5m
much smaller than the 1.25m as in simulation. Additionally,
the ailerons on the DelFly Explorer had a faster response
rate than the low pass filter set on the rudder dynamics in
simulation. It was also observed that the aileron deflection was
not symmetrical, the DelFly would turn more effectively to the
right than it did to the left. Aileron actuation would also result
in a reduction in thrust meaning that active altitude control
was required from the user throughout all flights. It was also
observed that there were light wind drafts observed around
the window which affected the DelFly’s flight path. This draft
would typically slow the DelFly forward speed slightly and
push the DelFly to one side of the window.
With these significant differences between the model used

to train the BTs and the real DelFly there as a clear reality
gap present. Initially both behaviours were not successful in
flying through the window, the behaviour thresholds had to
be adjusted to ensure that the DelFly would behave similar
to that in simulation. This was done first for the user-defined
behaviour, the updated behaviour can be seen in Figure 13. It
was required to adjust the turn rate set points to try to achieve
a more symmetrical wall avoidance behaviour. Due to the
different environment in reality the window response at which
the DelFly started its window tracking was also raised slightly.
The threshold at which the DelFly started its wall avoidance
was also changed to ensure the DelFly could evade walls.
These changes helped push the behaviour in reality towards
that observed in simulation. In total, it took about 8 flights of
about 3 minutes each to tune the parameters of the behaviour.
A similar process was done for the genetically optimised

behaviour. As the parameters for the wall avoidance was the
same for both behaviours, the changes to this could be done
before any flight tests. As a result, only the window tracking
turn rate, default turn rate and the window response values
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Fig. 13. Graphical depiction of user-defined BT after modification for real
world flight. Red boxes highlight updated nodes. x is the position of the centre
of the window in frame, σ is window response value, Σ is sum of disparity
and Δ is the horizontal difference in disparity

Fig. 14. Graphical depiction of genetically optimised BT after modification
for real world flight. Red boxes highlight updated nodes. x is the position of
the centre of the window in frame, σ is window response value, Σ is sum of
disparity and Δ is the horizontal difference in disparity

TABLE III
SUMMARY OF FLIGHT TEST RESULTS

Parameter user-defined genetically optimised
Success Rate 46% 54%
Mean flight time [s] 12 16
Mean approach angle [◦] 16 37
Mean distance to window centre [m] 0.12 0.12

had to be tuned. These parameters took about 3 flights to tune
to result in behaviour similar to that seen in simulation. The
updated behaviour can be seen in Figure 14.
After an initial training session where the thresholds were

re-optimised to real flight, 26 test flights were conducted for
both the user-defined behaviour as well as the genetically
optimised BT. The results of the tests are summarised below
in Table III.
It can be seen that the success rate of both behaviours is

reduced success rate but the other performance parameters are
similar to that seen in simulation. The relative performance of
the behaviours is also similar to that seen in simulation. The
mean flight time of the behaviours was reduced but notably
the relative flight times of the behaviours is the same as seen
in simulation. The reduction in the time to success can be
explained by the reduced room size and increased turn rate of
the DelFly seen in reality as opposed to that in simulation.
The mean angle of window entry is also similar to that

observed in simulation. The mean distance to the centre of the
window was higher for the user-defined behaviour than seen
in simulation. This can be as a result of the drafts seen around
the window pushing the DelFly to the edges of the window
in the last phase of the flight when the window was too close
to be in view.
The user-defined behaviour showed similar failure as seen

in simulation characterised by being caught in corners, this
happened 4/26 flights for the user-defined behaviour but not
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Fig. 15. Flight path tracks of the last 7s of all successful flights for the
user-defined behaviour. Circle represents start of path
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Fig. 16. Flight path tracks of the last 7s of all unsuccessful flights for the
user-defined behaviour. Circle represents start of path

once in the genetically optimised behaviour. Figure 15 and
Figure 16 show the last 7s of the user-defined behaviour
for all flights grouped in successful and unsuccessful tests
respectively. The Optitrack flight tracking system did not
successfully track the DelFly in all portions of the room
resulting in some dead areas but did accurately capture the
final segment of the window approach.
These plots show that the DelFly tried to approach and fly

through the window from various areas of the room at various
approach angles. Approaches from areas of high approach
angle typically resulted in a failed flight as the DelFly would
hit the edge of the window. Additionally, the crashes in the
wall due to being caught in corners can also be seen. Figure
17 shows one full successful and unsuccessful flight of the
DelFly user-defined behaviour.
Similarly, Figure 18 and Figure 19 show the successful and

unsuccessful flights of the genetically optimised behaviour as
captured from the optitrack system. In these figures it can be
seen that the flight tracks of genetically optimised behaviour
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Fig. 17. Flight path tracks showing one complete successful (blue) and
unsuccessful (green) flight for the genetically optimised behaviour. Circle
represents start location of test. Red track shows area where tracking system
lost lock of the DelFly
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Fig. 18. Flight path tracks of the lest 7s of all successful flights for the
genetically optimised behaviour. Circle represents start of path

are tightly grouped with the same behaviour repeated over
multiple flights. The DelFly always approaches from about the
centre of the room with a coordinated left-right turn described
earlier. It can be seen that some of the unsuccessful flights
occur when the DelFly makes an approach from farther way
than normal so the coordination of the left-right turning is
out of sync causing the DelFly to drift off course and hit
the window edge. Figure 20 shows one entire successful and
unsuccessful flight of the genetically optimised behaviour in
more detail. The typical failure mode was turning into the edge
of the window in the final phase of the flight.
The failure mode of hitting into the window edge for both

behaviours can be in part the result of the drafts observed
around the window or in part due to the lack of detailed texture
around the window. These external factors would affect the
two behaviours equally so would not affect the comparison of
behaviours.
The fact that the behaviours where not initially able to fly
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Fig. 19. Flight path tracks of the lest 7s of all unsuccessful flights for the
genetically optimised behaviour. Circle represents start of path
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Fig. 20. Flight path tracks showing one complete successful (blue) and
unsuccessful (green) flight for the genetically optimised behaviour. Circle
represents start location of test. Red track shows area where tracking system
lost lock of the DelFly

through the window and were able to fly through more than
50% of the time after user optimisation shows that the reality
gap was actively reduced by the user. These results show that
it is feasible to automatically evolve behaviour on a robotic
platform in simulation using the BT description language. This
method gives the user a high level of understanding of the
underlying behaviour and the tools to adapt the behaviour
to improve performance and reduce the reality gap. Using
this technique an automated behaviour was shown to be as
effective as a user-defined system in simulation with similar
performance on a real world test platform.

VIII. CONCLUSION

We conclude that the increased intelligibility of the Be-
haviour Tree framework does give a designer increased under-
standing of the automatically developed behaviour. The low
computational requirements of evaluating the Behaviour Tree
framework makes it suitable to operate onboard platforms with
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limited capabilities as it was demonstrated on the 20g DelFly
Explorer flapping wing UAV. It was also demonstrated that the
Behaviour Tree framework provides a designer with the tools
to identify and adapt the learnt behaviour on a real platform to
reduce the reality gap when moving from simulation to reality.
Future work will investigate further into optimising the

parameters of the Evolutionary Learning used in this paper.
Multi-objective fitness functions and co-evolution of behaviour
and simulated environment are interesting directions to inves-
tigate. Additionally, work will be done on investigating how
Behaviour Trees scale within Evolutionary Learning, both in
terms of Behaviour node types but also in task complexity.

ACKNOWLEDGMENT

The authors would like to thank Christophe de Wagter for
his assistance with the SmartUAV simulation platform and
Erik-Jan van Kampen and Luı́s Simões for useful feedback
on this paper.

REFERENCES

[1] S. Nolfi and D. Floreano, Evolutionary Robotics: The Biology, Intelli-
gence and Technology. Cambridge, MA, USA: MIT Press, 2000.

[2] J. C. Bongard, “Evolutionary Robotics,” Communications of the ACM,
vol. 56, no. 8, pp. 74–83, Aug. 2013.

[3] S. Nolfi, “Power and the Limits of Reactive Agents,” Neurocomputing,
vol. 42, no. 1-4, pp. 119–145, Jan. 2002.

[4] D. Floreano and F. Mondada, “Automatic Creation of an Autonomous
Agent: Genetic Evolution of a Neural-Network Driven robot,” From
Animals to Animats, 1994.

[5] S. Nolfi, D. Floreano, O. Miglino, and F. Mondada, “How to Evolve
Autonomous Robots: Different Approaches in Evolutionary Robotics,”
in Artificial Life IV: Proceedings of the Fourth International Workshop
on the Synthesis and Simulation of Living Systems, R. A. Brooks and
P. Mates, Eds. Cambridge, MA, USA: MIT Press, 1994, pp. 190–197.

[6] N. Jakobi, P. Husbands, and I. Harvey, “Noise and the Reality Gap: The
Use of Simulation in Evolutionary Robotics,” in Advances in Artificial
Life, F. Morán, A. Moreno, J. J. Merelo, and P. Chacón, Eds. Granada,
Spain: Springer Berlin Heidelberg, Jun. 1995, pp. 704–720.

[7] O. Miglino, H. H. Lund, and S. Nolfi, “Evolving Mobile Robots in
Simulated and Real Environments,” Artificial life, vol. 2, no. 4, pp. 417–
34, Jan. 1995.

[8] L. Meeden, “Bridging the Gap Between Robot Simulations and Reality
with Improved Models of Sensor Noise,” in Genetic Programming.
Madison, WI, USA: Morgan Kaufmann, Jul. 1998, pp. 824–831.

[9] J. C. Bongard, V. Zykov, and H. Lipson, “Resilient Machines through
Continuous Self-Modeling,” Science, vol. 314, no. 5802, pp. 1118–21,
Nov. 2006.

[10] J. C. Zagal and J. Ruiz-del Solar, “Combining Simulation and Reality
in Evolutionary Robotics,” Journal of Intelligent and Robotic Systems,
vol. 50, no. 1, pp. 19–39, Mar. 2007.

[11] S. Koos, J.-B. Mouret, and S. Doncieux, “The Transferability Approach:
Crossing the Reality Gap in Evolutionary Robotics,” Transactions on
Evolutionary Computation, vol. 17, no. 1, pp. 122–145, Feb. 2013.
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Chapter 2

Literature Review

In this chapter, we will present some detailed background into BTs as well as some popular
EL techniques which can be used to automatically develop these trees to solve specific tasks.
We will also shed some light on previous work done on developing autonomous behaviour on
previous research on flapping wing Unmanned Aerial Vehicles (UAVs). Additional literature
covering an overview of forms of Artificial Intelligence, learning and decision making tech-
niques, planning methods and popular Flight Control System frameworks can be found in
Appendix A.

2-1 Behaviour Trees

In the early 2000’s, computer game designers developing behaviour for the NPCs within
their games were asking for a behaviour management system with capabilities that no single
method could deliver (Champandard, 2007). They found their solution in a method developed
originally by Dromey (2003) to describe complex system requirements called the Behaviour
Tree. BTs combine many of the strengths of other methods and as a result quickly became
popular in the gaming industry, most notably in Halo 2 (Isla, 2005). Some of the notable
properties of BTs are:

• Use of hierarchy in Hierarchical Finite State Machine (HFSM) facilitates reusability of
code base and expandability of character behaviour

• Expressing behaviour in terms of a set tasks as in Hierarchical Task Network (HTN)
allows for easier decomposition of behaviour

• The simplicity of decision trees makes recursive decomposition easy to implement

• Graphical state charts found in FSM give users a good overview of the NPC behaviour
reducing representational complexity
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BTs are depth-first, ordered Directed Acyclic Graphs (DAGs) used to represent a decision
process. DAGs are composed of a number of nodes with directed edges. Each edge connects
one node to another such that starting at the root there is no way to follow a sequence of edges
to return to the root. This behaviour allows for more compact behavioural representation
than the decision tree. Unlike FSMs, BTs consider achieving a goal by recursively simplifying
the goal into tasks similar to that seen in the HTN. This hierarchy and recursive action make
the BT a powerful way to describe complex behaviour. The mechanics of the BT are described
below.

2-1-1 Syntax & Semantics

A BT is syntactically represented as a rooted tree structure, constructed from a variety of
nodes each with its individual internal function but all nodes have the same external interface.
Each node in a BT has a return status, generally either Success or Failure. The status Success
is the status of a node that has been successfully executed. Inversely, the status Failure is
used when a node has failed during execution. This however does not define the condition
under which the node failed, some implementations include an Exception or Error status to
provide this information.

Basic BTs are made up of three kinds of nodes: Conditions, Actions and Composites
(Champandard, 2007). Conditions and Actions make up the leaf nodes of the BT whilst
the branches consist of Composite nodes. Conditions test some property of the environment
returning Success if the conditions are met and returns Failure otherwise. The agent acts
on its environment through Action nodes. Actions can be blocking (node only returns when
action is successfully completed) or non-blocking but typically always return Success. As
a result, Actions usually follow a Condition node to determine if the Action is applicable.
Alternatively, if some fixed precondition needs to be applied to a node, the condition can be
checked within the node itself returning Failure is the condition is not meet or if there is some
internal time-out.

Leaf nodes must be individually developed to perform specific tasks but can be reused readily
in the tree as required. Composite nodes however are not typically platform dependant and
can be reused in any BT. All the nodes in the BT use a similar interface so that arbitrary
combination of these nodes is possible in the BT without knowledge of any other part of the
BT making BTs modular and reusable. A sample BT highlighting the graphical representation
of the different nodes can be seen in Figure 2-1.

As the branches of the BT, Composite nodes determine how the BT is executed. We will only
consider Sequences and Selectors in this paper although many others are used in practice.
The most popular Composite nodes shown below. The Root node of a BT is typically a
Selector node that has no parent.

Selectors return Success when one of its children return Success and Failure when all of
its children return Failure. The Selector typically tests its child nodes sequentially along a
certain priority, graphically, this priority is defined in the ordering from left to right as shown
in Figure 2-2a. Selectors have a sort of inherent fail-safe as the node will test its children in
sequence until it finds an action that is applicable to the current state of the environment.

A Sequence will return Failure when one of its children fails and Success if all of its children
return Success. This is the operational opposite of a Selector. Again, a sequence will run its
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Figure 2-1: Graphical depiction of a Behaviour Tree highlighting node types

(a) Selector (b) Sequence (c) Parallel

(d) Decorator (e) Link

Figure 2-2: Graphical representation of popular BT Composite nodes

children in a prioritised manner, graphically represented left to right as shown in Figure 2-2b.
Sequences are useful to perform combinations of tasks that are interdependent.

The Parallel differs from other Composites in that it runs all of its children concurrently as
if each were executed in its own thread. The return conditions of the Parallel can be altered
depending on the required behaviour. It could be made to act as a Selector or as a Sequence
or some hybrid where some number of children must return either Success or Failure to trigger
a return of the parent Parallel. Parallels are used to run concurrent branches of the BT but
are also commonly used to check whether the conditions for an action are continually met
while the action is running. Its node symbol can be seen in Figure 2-2c.

Decorator nodes typically have only one child and are used to enforce a certain return state
or to implement timers to restrict how often the child will run in a given amount of time or
how often it can be executed without a pause. The decorator node is shown in Figure 2-2d.

The Link node, is used in a BT to reference and execute another BT in place of the node.
The name of the tree executed is written beneath the node. The success and failure of a Link
node is based on the referenced BT. This node adds the ability to make modular BTs which
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supports reuse of behaviour. This node can be considered as a special type of decorator and
its symbol is shown in Figure 2-2e.

2-1-2 Execution

The execution of the behaviour tree is referred to as a tick. A tick starts from the root
node which is typically a selector node and evaluates down the tree starting at the left most
node. An execution is complete when a branch of the root node returns success or all of its
branches return failure. Let us evaluate an example from Millington & Funge (2009), seen in
Figure 2-3, to illustrate the execution of a tick. This example shows how a BT can be used
to open a door under differing conditions. This example shows how the modularity of the
BT can be used to good effect. The only actions implemented are Move and Barge Door but
Move is used three times in the tree with a different set point to move to. The nodes were
not required to be changed at all depending on their location in the tree.

Figure 2-3: An example of BT used to define the behaviour to open a door Millington & Funge
(2009) (modified for clarity)

Let us first assume that the Action nodes in the tree are blocking. Executing the tree with
the situation that the door is open we start at the Root node and move to the first node on
the left. We then move to (3) which will evaluate Success and return this value to its parent.
The Sequence will then continue to its next child which is an Action which will return Success
to its parent upon completion. The Sequence node has no more children and all of its children
where successful so it returns Success to its parent ending the tick of the tree.

Evaluating another situation, let us assume the door is closed but unlocked. We again start
at the Root node and evaluate down to (3) which will return Failure to its parent Sequence
which will also return Failure to the Root node. The Root node will then evaluate its next
child, moving down through (5) to (6) which evaluates Success once the agent has moved to
the door. The Sequence (5) moves to its second child which is a Selector node which in turn
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evaluates its child a Sequence moving onto (9). As the door is open,0. (9) will return Success
and the Sequence (8) will evaluate (10). Once the door is open (10) returns Success to (8)
which returns Success to (7) which in turn immediately returns Success to (5) which then
evaluates (14). Upon conclusion Success is passed up the tree to the Root ending the tick.

In the event that the door is closed and locked a similar execution will occur except (9) will
return Failure and the execution will move to (12). If the barge action successfully opened
the door the execution will proceed back up the tree to (14). Once the action is complete the
execution returns to the Root node with Success.

This execution procedure is the main difference between BTs and Decision Trees. Decision
Trees typically traverse from some root node to a leaf node by a series of binary decisions never
traversing back up the tree. BTs contain decision nodes that perform compound decisions
and the traversal the decision process can travel back up the tree and down a different branch.
This traversal allows for the same behaviour to be expressed with little repetition.

2-1-3 Advantages

BTs consider achieving a goal based on a recursive decomposition of that goal into tasks. This
design ethos inherently facilitates the generation of goal based behaviour. This is different to
the approach as seen with FSM where the focus is based on the mapping of the state-action
set and the designer has to mould this mapping to lead the agent to some desired state. This
also prevents BTs from being subject to the state explosion phenomenon which affects FSMs.

The representational complexity that makes the use of FSM difficult to use for complex
behaviour can be addressed in practice by introducing hierarchy resulting in a HFSM. While
this approach is effective in reducing the representational complexity of the State Machine it
is still not a very reusable framework. The transitions from any state to another still have
to be explicitly described in the HFSM meaning that reusing particular state in another area
of the behaviour requires an explicit description of its transitions. BTs implicitly describe its
behaviour in the structure of the tree rather than in node-wise state transitions as in FSM or
HFSM. This makes the BT approach more modular and reusable resulting in a more easily
scalable design framework.

As the BT evaluates its branches in a prioritised manner which is defined by the structure
of the tree, BTs inherently facilitate multiple methods to achieve the same behaviour. If
one behaviour is not successful simple move to the next suitable behaviour in the priorities
network, this creates a form of contingency planning.

BTs represent a very simple form of planning but as they do not explicitly consider the
future effects of current actions but rather rely on a preset collection of behaviours, they fall
under the definition of reactive planners. Reactive planners, or Dynamics Planners as they
are also known, are not planners in the traditional sense as standard reactive systems do not
contain a model of the environment and hence do not consider the future effects of a set of
actions. Instead they are based on a predefined set of actions to perform based on the current
environment state and the goal to be achieve. As BTs do not explicitly consider the effects
of actions but rather only observe the current state, they do not require an internal model
of the environment and are therefore very simple and are relatively computationally efficient
to evaluate. BTs are interesting to be used on small robotic platforms where computational
power is low a
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Work has shown that agents with this form of reactive architecture can exhibit complex
behaviours in challenging environments (Nolfi, 2002). Arkin (1998); Nolfi & Floreano (2000);
Floreano & Mondada (1994) have also shown that combination of actions and in a prioritised
or hierarchical network can be used to develop complex agent behaviour. This type of planning
has very low computational requirements and can be run very quickly to operate in highly
dynamic environments. A more detailed literature review of planning methods can be found
in Appendix A-2.

2-1-4 Limitations

Although all FSM behaviour can be encoded in a BT framework, one disadvantage of the BTs
framework is that handling discrete events is not inherently implemented in the structural
framework as is the case with an event driven FSM. One way to reduce this problem is to
include an internal cache to store these events for the BT to handle at some later tick the
same way it would any other sensory input. Alternately, an event handler can be designed to
call a BT to handle an event concurrently to the main behaviour.

2-1-5 Recent Advances

Two independent research groups have used different practical implementations of EL to
evolve BTs to complete complex tasks of an agent in a computer game (Lim et al., 2010; Perez
et al., 2011). The earliest was the work of Lim et al. (2010) which used this architecture to
develop an AI agent to compete in the strategy game DEFCON. In this paper, the Genetic
Programming (GP) search optimisation was applied directly to the BT framework, as the BT
structure resembles that of the decision tree by design GP can be applied to BTs using existing
theory with minimal changes. Crossover operations were implemented as an interchange of a
tree branch and mutations were implemented as a random change of one or multiple nodes
in the tree.

Using this framework Lim et al. (2010) were able to develop an agent that could defeat
a user-defined agent more than 50% of the time. This paper also showed that with their
configuration a plateau was seen in the performance of the agent after a small number
of generations and that other optimisation techniques may be needed to aid performance
improvement. It also showed that the situations used to train the agent significantly steer its
final generalised performance, a board selection of test cases are needed to prevent over-fitting
(Lim, 2009).

In contrast to this direct implementation Perez et al. (2011) uses a variation on Genetic
Algorithms (GA) was used to evolve the BT called Grammatical Evolution. This method is
more similar to standard GA in that is uses a binary string structure but unlike standard
GAs, GE uses a variable length string. The authors used a function to parse the BT as a
character string and then used GP to optimise the strings. This method was used to develop
an agent for the Mario AI Benchmark.

To address some of the performance limitations seen by Lim et al. (2010) the reactive
behaviour of BTs was augmented by an A∗ path planning algorithm implemented simply
as a node in the BT with a low priority. The authors also limited the BT to evolve with an
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and-or tree structure. This restriction reduced the search space of the EL but also forces the
BT to evolve in a fixed structure limiting the learning capabilities of the final solution.

This previous work on evolving BTs was applied to simulated games where the game world is
inherently discrete and certain. Real robotic platforms operate in a continuous and uncertain
environments where behaviour learnt in simulation is based on a limited model of reality.
Extending this behaviour to real world platforms is therefore a non-trivial investigation.

In the Aerospace arena, Ögren (2012) was the first to propose that the modularity, reusability
and complexity of UAVs may be improved by implementing the decision making systems using
a BT framework. He went on to describe how such a system would be implemented, a figure
showing a proposed BT can be seen below in Figure 2-4.

Figure 2-4: Example BT defining the behaviour for combat UAV (Ögren, 2012)

This approach is in contrast the the standard currently utilised in the Aerospace industry
where FSM are commonly used to describe UAV behaviour. Some of the most popular UAV
software packages such as Paparazzi and ArduPilot both use forms of FSM to implement their
mission management (Paparazzi Community, 2013a; ArduPilot Community, 2013c,a).

Building on the work proposed by Ögren (2012), Klöckner (2013a) went on to discuss in
more detail the possible advantages of using BTs in mission management and proposes some
research area needed to implement such a management system. Klöckner (2013b) describes a
method to parse a behaviour tree into logical statements using the description logic Attributive
Language with Complements and concrete Domains (ALC(D)). These logic statements can
then be analysed and the BT can be verified to be safe to operate based on a predefined set
of logical rules.

BTs are also extensively used to model complex systems, bottlenecks in production systems
or unreachable requirements in a product development can be identified (Dromey, 2003,
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2004). The hierarchical formulation of BTs combined with the implementation of sequences
and selectors make it a logical method to model a production cycle. The most notable
implementation of this is with the Raytheon Company who uses this modelling technique to
identify possible errors delays in the production of there missile systems (Dromey, 2003).

2-2 Evolutionary Learning Techniques

EL is a metaheuristic global optimisation method which imitates nature’s mechanism of
evolution (Hiller & Lieberman, 2010). This section aims to give a more in depth look into
the operation of EL and provide an overview of the some of the most popular evolutionary
techniques used today.

2-2-1 Genetic Algorithms

GAs are modelled after the theory of evolution as postulated by Charles Darwin in the
mid 19th century. Darwin observed that individuals in an environment gained a survival
advantage through adaptation to the environment. This is commonly referred to as survival
of the fittest. GAs are the digital application of the Darwinian principle of natural selection
to artificial systems (Goldberg, 1989). Koza (2003) defines the GA as follows:

The Genetic Algorithm is a probabilistic search algorithm that iteratively transforms a set
(called a population) of mathematical objects (typically fixed-length binary character strings),
each with an associated fitness value, into a new population of offspring objects.

Feasible solutions for a particular problem are equivalent to members of a particular species,
where the fitness of each individual is measured by some user-defined, problem specific,
objective function. For each iteration or generation of a GA, the current population consists
of a set of trial solutions currently under consideration. Some of the youngest members
of the generation survive to adulthood based on their fitness and become parents who are
paired at random to create the next generation. The resulting children have genes from
both parents, the combination of which is determined through the process of crossover. This
combination of genes from the fittest parents is a form of exploitation where the emerging
policy tends towards the best policy. Each child may also be subject to mutation where
individual parts of their genes are changed, this introduces variation in the population which
results in greater exploration of search space. Mutation helps to search through the entire
search space potentially moving the search out of local optima (Melanie & Mitchell, 1998;
Chande & Sinha, 2008).

Unlike other heuristic methods, GAs analyse an entire population of solutions at each iteration
(Hiller & Lieberman, 2010). Many derivative methods have branched from GAs, tree-like
representations are explored in genetic programming and graph-form representations are
explored in evolutionary programming; a mix of both linear chromosomes and trees is explored
in gene expression programming.

The process of the GA can be summarised in the following steps:

1. Initialisation - Start with an initial population of feasible solutions.
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2. Evaluation - In each iteration the fitness of each individual of the population is
determined.

3. Selection and Procreation - Parents of the next generation are selected based on
some heuristic fitness function. Parents are paired create children though Crossover
where genes are combined in a random manner. Mutation is then applied to the children
based on a mutation rate.

The steps 2 and 3 are iterated until some stop condition is met. The GA is characterised by
5 variables:

• Population size - Total number of individuals in the GA

• Selection of Parents - The heuristic used to determine which individuals of the current
generation will become parents

• Passage of Features - How will procreation be implemented?

• Genetic Operator Rates - The rate at which the genetic operators will affect the
population

• Stopping Rule - The GA is stopped based on some rule such as a maximum number
of iterations, a maximum CPU time or a maximum number of iterations without an
improvement of the best individual fitness value

Selection There are many techniques used to select individuals to become parents and
contribute genetic material to the next generation. Selection pressure is defined as the degree
to which the better performing individuals are preferred for mating than lower performing
individuals (Miller & Goldberg, 1995). The selection pressure drives the GA to improve the
average fitness of the generation and typically has large influence on the convergence rate
of the GA, the higher the selection pressure the faster the convergence rate becomes. GAs
can typically converge to the optimal or near-optimal solution for a large range of selective
pressure but if it is too low the GA may take unnecessarily long time to converge and if the
selection pressure is too high the GA may converge prematurely to a sub-optimum solution.
We will mention a few of the more popular selection methods below.

Fitness Proportionate Selection was popular during the early development of GA with the
Roulette Wheel a popular implementation method. Each slot in the virtual roulette wheel
represents an individual in the population and the size of the slot is proportional to its fitness.
The higher the fitness of the individual the more likely it is that more copies of that individual
will be made for the next generation (Goldberg, 1989). This selection method is not very
robust and breaks down in two situations: when all individuals obtain similar fitness, selective
reproduction causes random search with genetic drift or; when only a few individuals have
a much higher score than the remainder of the population, a large number of the offspring
will be copies of these few individuals causing premature convergence of the GA (Nolfi &
Floreano, 2000).

Another popular method is Rank Selection where individuals are ranked from best to worst
and their probability of reproduction is proportional to their rank. A variation of this method
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is Truncation Selection which was used to good effect in (Nolfi & Floreano, 2000). This method
involves ranking the individuals of the population and selecting the first M individuals and
make O copies of their chromosomes given that M ×O = N .

A robust and easy to implement method used extensively is Tournament Selection (Miller &
Goldberg, 1995). This method typically involves choosing s individuals at random from the
population, sorting this sub-population based on their fitness and selecting the nth member
of the group based on the probability P given by

P = p · (1− p)n; n := [0, s− 1] (2-1)

where p is the selection probability. Based on Equation (2-1), when (p = 1) the best member
of the selection sub-population is always selected and in the case where (s = 1) selection is
random. In practice this is implemented as follows for a selection population of (s = 2). Two
individuals are selected at random and then check if a randomly generated number in the
range [0, 1] is larger than P , if so then the individual with the higher fitness is selected for
reproduction, else the individual with the lower fitness is selected. Selection pressure can be
adjusted by changing the tournament size, the more individuals chosen in the tournament
pool, the less likely weaker individuals will be selected to procreate thereby increasing the
selection pressure. This method is often combined with Elitism to ensure that the best
performing individuals are not lost. Elitism consists of choosing a number individuals with
the highest fitness and copying them into the new generation

Procreation Varying techniques are used to ensure that the GA will converge in finite time
to a near-optimal solution, we will consider a few here. Firstly, Reproduction is a process
which typically involves making an exact copy of a member of the population chosen by some
selection method and moving the copy into the population of the new generation. This is
similar to elitism but with a more general selection method applied.

Crossover is the main operator in GAs, it is typically applied to the population of selected
individuals for the new population with a uniform probability referred to as the Crossover
rate. Crossover involves choosing a random point along each chromosome and exchanging
genetic material between the chromosomes. This is referred to as One Point Crossover, alter-
natively if multiple points are used for crossover this is called multi-point crossover. Although
reproduction methods that are based on the use of two parents are more biology inspired,
some research suggests that more than two parents generate higher quality chromosomes
(Eiben et al., 1994). A crossover rate that is too high may lead to premature convergence of
the genetic algorithm in a local optima.

Mutation In GAs, mutation is typically applied to each node in the character string with a
given uniform probability selection defined by the Mutation Rate. Mutation typically consists
of some small localised change of a gene, for example, with binary representation it may be
applied as a bit switch. A mutation rate that is too high may lead to loss of good solutions,
this can be mediated by the inclusion of elitist selection.
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2-2-2 Genetic Programming

In the field of machine learning and artificial intelligence a variation of the GA algorithm is
commonly used called GP. This method addresses the limiting factors of the GA namely the
use of a fixed length binary string, not all problems can be reduced to this representation. GPs
were developed specifically to automatically develop computer programs to solve a high-level
problem statement (Koza, 1992, 1994). The idea was postulated by Arthur Samuel in 1959
who stated the question:

”How can computers learn to solve problems without being explicitly programmed? In other
words, how can computers be made to do what is needed to be done, without being told exactly
how to do it?”

Koza (1992) describes in detail how GPs can be represented in binary trees using LISt
Processing (LISP) type expressions. LISP is a form of functional computer programming
language based on nested lists, this is a very popular in Artificial Intelligence (AI). These
structures are used in combination with GPs to automatically generate complex mathematical
functions for problem solving or provide a mapping of inputs and outputs of a robotic platform.

Crossover is applied in a similar manner to GAs where a link in the binary tree is chosen at
random and used to exchange tree branched between parents. Mutation however is applied
by replacing a randomly selected node in the binary tree with a randomly generated sub-tree
(Koza, 1992). This method can be seen to be similar to a crossover operation with a randomly
generated second parent, this is therefore sometimes called macromutation or headless chicken
crossover (Angeline, 1997). Due to the similarity in the mechanisms, mutation is not often
used in GP and is often replaced by using a larger population size.

2-2-3 Neuroevolution

Unlike previous methods, this form of learning uses evolutionary algorithms to train an
ANN. ANNs are computational models inspired by naturally occurring biological nervous
systems (Floreano et al., 2008). As the name suggests ANN are composed of a network of
interconnected neurons which have a number of inputs and outputs. Each neuron and the
synapses connecting them together affect the signal passing along them with varying methods.
The response of the ANN can be changed by varying the parameters of these neural and
synaptic weights.ANNs can be represented as shown in Figure 2-5. In neuroevolution, these
weights are optimised using evolutionary operators.

In the summary provided by Floreano et al. (2008), one unique design choice that has to be
made when setting up the evolutionary process with neuroevolution is the selection of the
representation method used, these can be divided into three groups: direct, developmental
and implicit.

Direct representation is a one-to-one mapping of parameter values in the ANN and the
genes in the genetic string. This is usually used to evolve the weights of ANN with fixed
network topologies. One method for the encoding and evolution of both the architecture
and neural weights of ANN is NeuroEvolution of Augmenting Topologies (NEAT) (Stanley
& Miikkulainen, 2002).
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Figure 2-5: Graphical depiction of the Artificial Neural Network framework

Floreano et al. (2008) states that developmental representations were introduced by some
researchers to evolve large networks. In this method, the specification of the neural net devel-
opmental process is encoded which in turn is used to generate the ANN. This representation
results in compact genotypes which can generate complex ANN and developed sub-networks
can be reused throughout the ANN. A popular method using this representational method is
Cellular Encoding.

Finally, implicit encoding more closely mimics biological gene regulatory networks. As seen
in biological neural networks, the neuron behaviour is not explicitly encoded in the neuron
but is dependant on the environment it is immersed in. An implementation of this method is
Analog Genetic Encoding, this can be applied to ANNs by introducing a level of abstraction
where the synaptic weights connecting the neurons is encoded in an interaction map.

In the the field of Robotics, a notable application of neuroevolution is Evolutionary Robotics.
This methodology builds upon the idea that complex behaviour can be expressed from
a combination of simple behaviours as used in Behaviour-Based Robotics (BBR) (Arkin,
1998). BBR automatically encodes simple behaviours in discrete blocks through iterative
decomposition of tasks and a coordinator chooses or mixes behaviours most applicable based
on the environment. This idea has been used to good effect on simulated and real platforms.

Nolfi (1998) claim that the task of determining the decomposition and integration of be-
haviours should be incorporated in the adaptation process and not a separate process. Based
on this idea, ER combines the determination and the selection of a network of simple
behaviours into one step. This network of behaviours is automatically learned using neuroevo-
lutionary processes (Nolfi & Floreano, 2000; Floreano & Mondada, 1994). ER is essentially an
automatic technique for generating solutions for a particular robotic task, based on artificial
evolution (Trianni, 2008).

One pitfall of this method is that the evolution of the ANN is typically based on the perfor-
mance of the agent in a simulated environment. Research has shown that there are always
significant differences between simulation and reality, this is referred to as the reality-gap
(Zagal & Solar, 2007). Many methods have been investigated to reduce this reality gap and
can be separated into three main approaches (Bongard, 2013). The first approach investigates
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the influence of simulation fidelity on the EL, with investigation focusing on the influence of
adding differing levels of noise to the robotic agent’s inputs and outputs (Jakobi et al., 1995;
Miglino et al., 1995; Meeden, 1998). It was shown that sufficient noise can deter the EL
from exploiting artifacts in the simulation but that this approach is generally not scalable
as more simulation runs are needed to distinguish between noise and true observations. The
second group focuses on co-evolution where the robotic controller is evaluated in and the
simulation model is updated using the performance error with a real world robotic platform
simultaneously (Bongard et al., 2006; Zagal & Solar, 2007). Alternatively, the error between
the simulation and real world environment can be used to estimate of the suitability of a
learnt behaviour on the real robot in a multi-objective function to trade-off simulated robotic
performance and the transferability of the behaviour (Koos et al., 2013). The final approach
performs online adaptation of the behaviour after the EL using relatively complex methods
(Hartland & Bredèche, 2006).

Although these approaches have varying levels of success the problem of possible damage to
the robotic platform during the learning process is also not addressed. Most tests with online
learning or co-evolution are done with a robotic platform that has relatively slow dynamics
and low mass so risk of damage is low. Additionally the path of the robot is observed by
an external source. Applying online learning techniques with more complex platforms in an
unsupervised arena is still a challenge.

2-3 Behavioural Development on Flapping Wing Platforms

Some previous work has been done with the aim of extending the functionality of the au-
tonomous behaviour of the Delfly flight platform. This work has till now been focused on
obstacle avoidance in cluttered environments. de Croon et al. (2012) proposed the framework
expressed in the state machine showed in Figure 2-6. The DelFly was simply required to
perform a bidirectional turn for a fixed time if it encountered an obstacle.

Figure 2-6: DelFly obstacle avoidance FSM implementation as defined by de Croon et al. (2012)

The work of Tijmons (2012) extended on this work and proposed that the DelFly should only
perform unidirectional turns to ensure that it would not get caught in corners. The behaviour
is expressed in the state machine below in Figure 2-7. Limited to the obstacle avoidance
problem only, both of these solutions are relatively quite simple but already require many
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parameters to be tuned to operate successfully. Let us take the work of Tijmons (2012) for
example, this decision process is determined using 4 parameters, each has to be tuned for a
particular flight speed and flight configuration. This problem further advocates the necessity
for future robotic system s to automatically learn required behaviour to achieve tasks.

Figure 2-7: DelFly obstacle avoidance FSM implementation as defined by Tijmons (2012)

Other applications with flapping wing flight platforms include the work of Julian et al. (2013)
using the H2Bird 13g flapping wing UAV for a fly-through-window task. The experiment
set-up an be seen in Figure 2-8. Unlike the self contained sensory and control system onboard
the DelFly Explorer, this work used a ground based camera and off-board image processing
to generate the heading set-point for the flight platform. Developing the algorithms to safely
avoid crashing into the walls and other obstacles while searching and attempting to fly through
a window is a non-trivial task. The fly-through-window task is a real world problem that is
pertinent to current research and is therefore chosen as the target behaviour to be learned as
part of this research.

Figure 2-8: Berkeley fly-through-window set-up (Julian et al., 2013)
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Chapter 3

DelFly Behaviour Tree Implementation

The task selected for the DelFly Explorer is to fly around a room to search for and identify
a window. Once identified the DelFly should fly through the window into an adjoined room.
This task should be completed using onboard sensors and computational capabilities only.
For simplicity, this paper will only investigate the BT will only control the horizontal control
of the DelFly. The flight velocity will also be fixed for all flights.

In this chapter we will first present the DelFly Explorer flight platform in Section 3-1 as
well as discuss the onboard vision based algorithms used for the fly-through-window task in
Section 3-2. Section 3-3 contains some information on the SmartUAV simulation environ-
ment, this is followed by a description of the simplified DelFly flight model used presented
in Section 3-4. The design of the the mission management module is then presented in
Section 3-5. The chapter is then concluded by a detailed discussion of the BT implementation
in Section 3-6. The work in this chapter builds on a preliminary investigation performed on
the Khepera wheeled robot implementation described in Appendix B.

3-1 DelFly Explorer

The DelFly is an insect-inspired flapping-wing UAV developed at the Delft University of
Technology (DUT), the main feature of its design is its biplane-wing configuration which flap
in anti-phase (de Croon et al., 2009). The DelFly Explorer is a recent iteration of this micro
ornithopter design (de Wagter et al., 2014). In its typical configuration, the DelFly Explorer
is 20g and has a wing span of 28cm. In addition to its 9 minute flight time, the DelFly
Explorer has a large flight envelope ranging from maximum forward flight speed of 7m/s,
hover, and a maximum backward flight speed of 1m/s. A photo of the DelFly Explorer can
be seen below in Figure 3-1.

The main payload of the DelFly Explorer is a pair of light weight cameras used to perform
onboard vision based navigation as shown in Figure 3-1. Each camera is set to a resolution of
128×96 pixels with a field of view of about 60◦×45◦ respectively. The cameras are separated
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Figure 3-1: DelFly Explorer in flight with the camera module in view

by 7cm, this separation can be used to gain some information about the 3D environment the
DelFly is operating in.

Currently, Stereo Vision is the main vision based processing algorithm used on the DelFly
Explorer. In computer vision, this is the method used to extract 3D information from digital
images similar to the way Stereopsis is used by binocular vision in animals (Scharstein &
Szeliski, 2002). This information gives the UAV depth perception which is used in obstacle
avoidance algorithms onboard the DelFly Explorer making it the first flapping wing UAV
that can perform fully autonomous flight in unknown environments. More information on the
vision based algorithms is presented in the next section. Additionally, the DelFly Explorer
also carries a barometer to measure its pressure altitude and a set of three gyroscopes to
determine its rotational rates.

3-2 Vision systems

Two vision based algorithms have been previously implemented on the DelFly Explorer which
will be used for the fly-through-window task, namely: LongSeq Stereo Vision and Window
Detection. We will briefly describe these systems below.
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3-2-1 LongSeq Stereo Vision

The DelFly Explorer uses a Stereo Vision algorithm called LongSeq which can be used to
extract 3D information of the environment from its two onboard optical cameras (de Wagter
et al., 2014). The main principle in computer vision based stereo vision is to determine which
pixel corresponds to the same physical object in two or more images. The apparent shift in
location of the corresponding pixels in the images, also referred to as the pixel disparity, with
the known geometry of the cameras can be used to reconstruct the 3D environment (Szeliski
& Zabih, 2000).

Some stereo vision methods use (semi-)global matching where a pixel is matched in a global
area in the companion image (Szeliski & Zabih, 2000). This method is typically computa-
tionally and memory intensive. Generally, the more localised the search faster the algorithm
runs. Localised search however is typically more susceptible to the amount of texture in
the image as well as scene lighting and camera measurement noise. Considering the limited
computational hardware onboard the DelFly Explorer a trade-off has to to be made as to
what stereo vision method can be used.

LongSeq performs optimization along one image line at a time reducing the degrading effect of
bad pixels as compared to other methods as pixel mismatching is constrained to that line only
(de Wagter et al., 2014). Additionally, since only one line is processed at a time the memory
requirements of the algorithm are lower than other conventional systems. This computation
efficiency and relatively good performance when considering texture and video noise makes
LongSeq a suitable candidate for the small DelFly Explorer platform.

A version of LongSeq was implemented for this research, a detailed description of the workings
of the algorithm see the work of de Wagter et al. (2014). The algorithm results in a pixel
disparity map which can be used to determine the distance to an object in the environment.
For the purpose of this research, the disparity map will be used primarily for obstacle
avoidance and window detection.

LongSeq has two main input parameters namely: maximum disparity which limits the algo-
rithm search length and defines the minimum distance at which a feature can be matched and;
the cost function threshold which defines what is a good pixel match. The maximum disparity
chosen for this paper was 12 which, in combination with the resolution and separation of the
cameras, corresponds to distinguishing objects at a minimum distance of about 70cm away.
This is sufficient to identify the window till it no longer fits in the camera frame and avoid
most possible obstacles.

An example of the output can be seen below in Figure 3-2, this shows a disparity map along
with the original optical image of the sample room facing a window in a wall at 4m distance.
To the naked eye the window is clearly visible in the disparity image whilst not so in the
original camera image.

3-2-2 Window Detection

An Integral Image window detection algorithm is used to aid the UAV in the
fly-through-window task. Integral image detection is a high speed pattern recognition al-
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(a) Original image from left camera (b) Original image from right camera

(c) Processed Stereo Disparity map

Figure 3-2: Original images from left and right camera as well as the resultant disparity map
stereo image produced when DelFly aimed at a window in a wall from 4m distance

gorithm which can be used to identify features in a pixel intensity map (Crow, 1984; Viola &
Jones, 2001). The integral image (II(x, y)) is computed as

II(x, y) =
∑

x′≤x,y′≤y

I(x′, y′) (3-1)

where x and y are pixel locations in the image I(x, y). As each point of the integral image is
a summation of all pixels above and to the left of it, the sum of any rectangular subsection is
simplified to the following computation

rect(x, y, w, h) = II(x+ w, y + h) + II(x, y)− II(x+ w, h)− II(x, y + h) (3-2)

This makes it computationally efficient to use these summations to identify a feature in
the image. de Wagter et al. (2003) applied this technique to camera images to identify a
dark window in a light environment using two cascaded classifiers. The first identified likely
window location candidates by comparing the average intensity within a feature space to that
of the boarder surrounding the feature reducing the search space significantly. The second
classifier refines these likely locations by checking each side of the feature to the average inner
disparity. This two step identification further increases the computational efficiency of this
window detection method.

The work of de Wagter et al. (2003) was designed specifically to operate when approaching
a building in the day time on a bight day. A more generalised method may be to apply the
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same technique described above to the disparity map rather than the original camera images.
The disparity map shows closer objects with larger disparity and as a result a window will
appear to be an area of low disparity (dark) in an environment of higher disparity (light).
As a result the same classifiers can be used as described by de Wagter et al. (2003). These
classifiers help to reduce the computational complexity of the window identification by only
vigorously investigating probable solutions.

3-3 SmartUAV Simulation Platform

SmartUAV is a Flight Control Software (FCS) and simulation platform developed in-house at
the DUT. It is used primarily with small and micro sized aerial vehicles and notably includes
a detailed 3D representation of the simulation environment which is used to test vision based
algorithms. It can be used as a ground station to control and monitor a single UAV or swarms
of many UAVs or as a simulation platform to test advanced Guidance Navigation and Control
(GNC) techniques (de Wagter & Amelink, 2007; Amelink et al., 2008). As a tool developed
in-house, designers have freedom to adapt or change the operating computer code at will,
making it very suitable for use in research projects.

SmartUAV contains a large visual simulation suite which actively renders the 3D environment
around the vehicle. OpenGL libraries are used to generate images on the PC’s GPU increasing
SmartUAV’s simulation fidelity without significant computational complexity. As a result
high fidelity 3D environments can be used allowing the vision based algorithms to be tested
with a high level of realism.

Additionally, SmartUAV was designed with a fully modular underlying framework. It is made
up of a collection of separate modules which operate independently but can communicate
with each other using dedicated communication channels. These modules are implemented
on separate program threads on the processor making them truly modular. This modular
framework makes this software platform very flexible and adaptable to many use cases. New
models can be added or removed easily as required for each situation. In simulation mode,
the vehicle and sensor dynamics are contained in a module which can be easily replaced with
data from a real vehicle. Modules can be grouped together into Advanced Flight Management
System (AFMS) charts which uses a Matlab Simulink like module flow diagram to give the user
the ability to visually connect modules together simplifying the design of complex systems.

SmartUAV updates the flight dynamics of all the simulated vehicles at 100Hz but the sensor
information is made available to other modules at 50Hz update rate. The user-defined AFMS
can be updated at a variable rate. The 3D environment is rendered at a fixed user-defined
rate.

3-4 Simplified DelFly Model

The DelFly Explorer is a newly developed platform and its flight dynamics have not yet been
investigated in depth. As a result an existing model of the DelFly II previously implemented
based on the intuition of the DelFly designers will be used in this work. This model is not
a fully accurate representation of the true DelFly II dynamics but was sufficient for most
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vision based simulations previously carried out. In this work, the inaccuracy of the model
will intentionally create a reality gap between the simulated dynamics of the DelFly and
reality. We will briefly summarise the dynamics used in simulation below.

The DelFly II has three control inputs, namely: Elevator (δe), Rudder (δr) and Thrust (δt).
All inputs are normalised to the range [−1, 1] which are mapped onto the actuator limits of
the DelFly. The elevator and rudder simply set the control surface deflection and the thrust
sets the flapping speed. The actuator dynamics of the DelFly for the rudder actuator were
implemented using a time delay and can be seen below in (3-3).

δ̇r = δrmax
(ur − δr); ur : [−1, 1] (3-3)

where ur is the rudder input and δrmax
is the maximum rudder deflection. This results in

a rudder transfer function with a rise time of 2.2s and settling time of 3.9s The elevator
deflection and thrust setting are simply mapped directly from the control input.

[

δe
δt

]

=

[

δemax
0

0 1

2

] [

ue
ut + 1

]

; ue, ut : [−1, 1] (3-4)

where ue and ut are the elevator and thrust input respectively and δemax
is the maximum

elevator deflection. The pitch (θ), yaw (ψ) and flight velocity (V ) dynamics of the DelFly can
be seen in (3-5). Things to note are there is no coupling in the flight modes of the simulated
DelFly. For this research, the throttle setting was constant at trim position resulting in a
flight velocity of 0.5m/s. Additionally, the maximum turn rate was set to 0.4rad/s resulting
in a minimum turn radius of 1.25m.
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 (3-5)

The roll angle (φ) of the DelFly is simply a function of the rudder setting as in (3-6).

φ =
1

2
δr (3-6)

Although the DelFly is operated in an indoor environment due to its low mass, local air flow
does affect its flight dynamics, for this reason gusts are introduced to the simulation. These
gusts can be turned on or off depending on the flight settings. As implemented, these gusts
affect the yaw angle and the vehicle directional velocity. The gust is defined using directional
parameters in the earth fixed frame using separate gust strength parameters for each axis.
The gust strengths are randomly generated at random time intervals during flight and are
bounded by a maximum gust (wmax). The randomised changes in the gusts help to mimic
the non-deterministic behaviour of indoor small scale air flow.

ψ̇ ← ψ̇ + 0.2 (−wxsinψ + wycosψ) (3-7)

Including the gusts, the translational equations of motion become

ẋ = V cosψ + wx

ẏ = V sinψ + wy
(3-8)
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There are some notable differences between the DelFly II and DelFly Explorer, firstly the
Explorer replaces the rudder with a pair of ailerons to roll the DelFly without inducing yaw,
this helps to stabilise the captured images. Additionally, the DelFly Explorer is 4g heavier
and has a slightly higher wing flapping speed. The flight dynamics described above are very
simple and not fully representative of the complex flight dynamics involved with the flapping
wing flight of the DelFly platform. As a result a large reality gap is expected when moving
from the simulation to reality.

3-5 Mission Management Module

Based on the previous description of the sensors onboard the DelFly and the algorithms
available the BT module has three inputs: the disparity map produced by the stereo vision;
the certainty of a window detection and; the window centre (x, y) location in the image frame
normalised in the range [−1, 1] from the integral image window detector.

Internally, the module computes the sum of disparity of the disparity map which gives an
indication of proximity to a large object such as a wall. Additionally, the difference of disparity
sums from the left and right half of the map are also computed providing the DelFly with
some information or relative proximity to object in the horizontal plane. The BT module
outputs the turn rate set point. This set points is sent to the DelFly FCS to set the servo
controller of the DelFly rudder. The module can generate values on the mapping [−1, 1] in
increments of 0.1.

In SmartUAV, the BT node is placed in series with the stereo vision module in an AFMS as
shown graphically in Figure 3-3. In terms of the larger SmartUAV simulation, the vision based
calculations are the most computationally intensive portion making it the limiting factor for
the speed of operation of the wider decision process. The higher the decision loop frequency
relative to the flight dynamics the longer a single simulation will take. This must be balanced
by the frequency at which the DelFly is given control instructions, where generally higher
is better. Considering this trade-off the AFMS loop was set to run at 5Hz relative to the
flight dynamics loop. This is a conservative estimate of the actual performance of the vision
systems onboard the real DelFly Explorer.

3-6 DelFly Behaviour Trees

A Unified Modelling Language (UML) chart with the node class structure for the DelFly can
be seen below in Figure 3-4. This shows that two composite nodes were used: Sequence and;
Selector. Two condition nodes and one action nodes were developed, namely: greater than;
less than and; turnRate. These behaviour nodes are accompanied by a Blackboard which was
developed to share information with the BT.

The Blackboard architecture implemented for the DelFly to add data to the BT, containing
five entries: window x location (x), window response (σ), sum of disparity (Σ), horizontal
disparity difference (∆) and turn rate (r). This variable map is available to all nodes in the
BT, the first four are condition variables which are set at the input of the BT and the last
item is used to set the BT output.
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Figure 3-3: SmartUAV GUI showing an Advanced Flight Management System interaction
overview chart for the DelFly fly-through-window task

Figure 3-4: UML class diagram of the Behaviour Tree framework for the DelFly

The conditions have two internal constants which are set on their initialisation: one sets
which Blackboard variable is to be evaluated and the other is the threshold to be tested. As
the names suggest, greater than and less than have boolean returns as to whether a variable
input is greater than or less than the threshold respectively. The Action node turnRate sets
the DelFly rudder input directly.
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Chapter 4

Evolutionary Learning Incorporation

The following chapter describes how EL was implemented to optimise the behaviour for the
DelFly fly-through-window task. Section 4-1 presents the implementation of the various
genetic operators. This is followed by a list of the metrics used to evaluate desired behaviour
in Section 4-2 and how these metrics were implemented in a fitness function in Section 4-3.

First let us describe how SmartUAV was changed to make it suitable for the EL process.
SmartUAV was designed primarily to simulate algorithms in realtime but these simulations
would cause the genetic optimisation to take a long time to converge. To decrease the
total simulation time some changes were made to the SmartUAV code base to increase the
simulation frequency. After some program optimisation it was possible to run SmartUAV
with all the necessary modules at ×40 realtime, ie a 60s simulation takes 1.5s to execute.

4-1 Genetic Operators

The main elements which make up the genetic program are: how the population of solutions
is initialised; how individuals are chosen for procreation; how individuals from one generation
are combined to make the next generation; how individuals are mutated and; when do you
stop the optimisation. These are individually described below.

Initialisation The initial population of M individuals is generated using the grow method
(Koza, 1994). This results in variable length trees where every Composite node is initialised
with its maximum number of children and the tree is limited by some maximum tree depth.
This provides an initial population of very different tree shapes with diverse genetic material
to improve the chance of a good EL search.

Selection A custom implementation of Tournament Selection is used in this thesis derived
from Miller & Goldberg (1995). This is implemented by first randomly selecting a subgroup
of s individuals from the population. This subgroup is then sorted in order of their fitness. If
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two individuals have the same fitness they are then ranked based on tree size, where smaller
is better. The best individual is typically returned unless the second individual is smaller, in
which case the second individual is returned. This was done to introduce a constant pressure
on reducing the size of the BTs.

Crossover As the tournament selection returns one individual, two tournaments are needed
to produce two parents needed to perform crossover. The percentage of the new population
formed by Crossover is defined by the Crossover Rate Pc. Crossover is implemented as the
exchange of one randomly selected node from two parents to produce two children. The node
is selected totally at random independent of its type or its location in the tree. Figure 4-1
and Figure 4-2 graphically show this process.

Figure 4-1: Sample parent Behaviour Trees with selected nodes for crossover highlighted with a
box

Figure 4-2: Resulting children from crossover operation of parents shown in Figure 4-1

Mutation Mutation is implemented with two methods, namely: micro-mutation and;
Macro-mutation. Micro-mutation only affects leaf nodes and is implemented as a reini-
tialisation of the node with new operating parameters. Macro-mutation, also called
Headless-Chicken Crossover, is implemented by replacing a selected node by a randomly
generated tree which is limited in depth by the maximum tree depth (Angeline, 1997). The
probability that mutation is applied to a node in the BT is given by the mutation rate Pm.
Once a node has been selected for mutation the probability that macro-mutation will be
applied rather than micro-mutation is given by the headless-chicken crossover rate Phcc.
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Stopping Rule An important parameter in EL is when to stop the evolutionary process.
Evolutionary computing is typically computationally intensive due to the large number of
simulations required to evaluate the performance of the population of individuals. Placing a
limit on the maximum number of generations can help avoid unnecessary long computational
time. Additionally, like many learning methods, genetic optimisation can be affected by
overtraining. Typically in genetic optimisation a limited number of training initialisations
are used to determine the individuals performance in one generation. This initialisation
is randomly changed each generation to promote the behaviour is generalised for the task.
Overtraining of the population can appear as the entire population being optimised to perform
well in the generalised situation and not one individual. This should appear as a decrease in
the generalised performance of the best performing individual.

For these reasons, the genetic optimisation has a maximum number of generations (G) at
which the optimisation will be stopped. Additionally, when the trees are sufficiently small to
be intelligible, the process can be stopped by the user.

Overview A flow chart of the implementation of the EL can be seen below in Figure 4-3.

Figure 4-3: Flow diagram showing implementation of the Evolutionary Learning architecture for
Behaviour Tree evolution
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4-2 Performance Parameters

To evaluate the effectiveness of DelFly in the fly-through-window task we must define some
performance metrics. These parameters are:

• Success rate - How often does the DelFly successfully fly through the window?
This is the main performance parameter as it is a measure of how well the goal is met.
The more often the DelFly is successful the better.

• Tree size - How large is the BT?
As BTs are meant to increase the user awareness of what the automatically evolved
individual is doing the evolved trees have to be of reasonable size. The smaller the BT
the better.

• Angle of Window Entry - At what angle did the DelFly enter the window?
It is expected that a the DelFly should enter the window near to perpendicular, the
closer to perpendicular the better the flight path.

• Time to Success - How long does the DelFly take to fly though the window?
The faster the DelFly flies through the window the better.

• Distance from Centre of Window at Fly-Through - How far away from the centre
of the window was the DelFly during a successful flight? The closer to the centre the
better.

4-3 Fitness Function

The purpose of the fitness function is to rate the performance of the individuals in the
population and is an objective function that the EL is trying to optimise. This function
is very important to determine the eventual behaviour exhibited by population. There are
two main parameters that can be used for this function to promote successful fly-through
behaviour: a boolean success parameter and a function inversely proportional to the distance
to the window. Both of these have their benefits and pitfalls.

Using the boolean approach, whilst individuals that are successful will be rewarded there is
no measure for how good behaviour is when not successful. This results in the population
not being actively directed towards the goal but relying more on random sorting to realise a
solution. This approach does not reliably find a solution.

Alternatively, the approach of the distance to the window is also flawed in that if you take the
minimum distance to the window centre during a flight it is possible that a behaviour that
flew close to the window but not through it would do better than one that crashed very near
the window while attempting to fly through. If we use the distance to the window centre at
the end of a simulation run we can see that the fitness of an individual that hits the edge of
a window is not much lower than an individual that just flies through. As the goal is to fly
through the window and not just towards it, this function is not sufficient.

Eventually after some experimentation, a combination of these two approaches was used to
encourage the EL to converge on a population that flies through the window as often as
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possible. A discontinuous function was chosen such that a maximum score is received if the
UAV flies through the window and a score inversely proportional to its distance to the window
if not successful. The fitness F is described below in (4-1).

F =

{

1 if Success
1

1+3|e| else
(4-1)

where success is defined as flying through the window and e is the vector from the centre of
the window to the location of the UAV at the end of the simulation. A plot of this fitness
function in the x− y − fitness domain can be seen below in Figure 4-4.
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Figure 4-4: Fitness function used to train the population in the Evolutionary Learning system
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Chapter 5

DelFly Task Optimisation

This chapter aims to present and discuss the results of the genetic optimisation for the
simulated DelFly fly-through-window task. We will first describe the simulated environment
used to train the automated behaviour in Section 5-1. This will be followed by presenting
the user-defined behaviour that will be used to compare the performance of the automated
system in Section 5-2. Next, Section 5-3 the parameters used in the genetic optimisation
will be stated. Finally, the results of the optimisation will be presented and discussed in
Section 5-4.

5-1 Simulated 3D Environment

The environment chosen to train the UAV in simulation was an 8×8×3m room with textured
walls, floor and ceiling. A 0.8× 0.8m window was placed in the centre of one wall. Another
identical room was placed on the other side of the windowed wall to ensure the stereo algorithm
had sufficient texture to generate matches for the disparity map when looking through the
window. A schematic of the room can be seen in Figure 5-1 below.
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(b) Side view

Figure 5-1: Schematic of test environment for the fly-through-window task
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As it is not the focus of this research to focus on the vision systems to provide the stereo
vision algorithm some texture, a multi-coloured stone texture pattern was used for the four
walls, a wood pattern was used for the floor and a concrete pattern used for the ceiling as
shown in Figure 5-2. The identically textured walls ensure that the behaviour must identify
the window and not any other features to aid in its task. Figure 5-3 below shows a picture of
the room from the centre of the coordinate axis in the room.

(a) Stone pattern used on walls (b) Carpet pattern used on floor (c) Concrete pattern used on ceiling

Figure 5-2: Texture used to decorate simulated flight test environment

Figure 5-3: Image of room from the origin with the window and DelFly and target window in
view

5-2 User-Defined Behaviour Tree

A human made behaviour was required to be designed which would be used as a control in
comparison to the genetically optimised solution. The designed tree had 22 nodes and the
structure of the BT can be seen graphically in Figure 5-4. The behaviour is made up of four
main parts namely:

• window tracking based on window response and location in frame - try to keep the
window in the centre of the frame

• default go straight when disparity very low - helps when looking directly through window
into next room
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• wall avoidance when high disparity - bidirectional turns to avoid collisions with walls,
also helps to search for window

• action hold when disparity very high - ensures the chosen action is not changed when
already evading a wall

Figure 5-4: Graphical depiction of user-defined BT. Colours highlight different phases of the
flight. x is the position of the centre of the window in frame, σ is window response value, Σ is
sum of disparity and ∆ is the horizontal difference in disparity

After validation of the behaviour, it was observed that for 250 random initialisations in the
simulated environment, the behaviour successfully flew through the window in 205 of the
runs, which translates to a success rate of 82%. Figure 5-5 shows a plot of the path of the
DelFly with the user-defined behaviour in two random initialisations, one which resulted in
a successful flight and the other a failure.
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(b) Path of an unsuccessful flight

Figure 5-5: Path of two flight initialisations of DelFly with the user-defined behaviour (top-down
view). Colours denote different decision modes: Green - window tracking; Blue - default action
in low disparity; Red - wall avoidance; Magenta - action hold

It can be seen in Figure 5-5a that the DelFly does actively avoid walls and tracks the window
well resulting in a near perpendicular window entry from the centre of the room. This is quite
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favourable behaviour which quickly identifies and tracks the window as desired. Figure 5-5b
however highlights one the pitfall of bidirectional wall avoidance in a square room with simple
reactive behaviour. This particular initialisation saw the DelFly evade the wall to its left only
to then react to the wall on its right resulting in a final collision with the original wall. This
type of behaviour can be rectified using different techniques but we will keep the behaviour
unchanged for further analysis as it is representative of true human designed behaviour.

5-3 Experimental Setup

As the DelFly must fly through the window as often as possible, to evaluate this we will
simulate the DelFly multiple times per generation to better estimate its generalised perfor-
mance. Each generation has k simulation runs to evaluate the performance of each individual.
Each run is characterised by a randomly initiated location in the room and a random initial
pointing direction. Individual initial conditions are held over multiple generations until the
elite members of the population (characterised by Pe) are all successful, in which case the
initial condition in question is replaced by a new random initialisation. Each simulation run
is terminated when the DelFly crashes, flies through the window or exceeded a maximum
simulation time of 100s.

The characteristic parameters are defined below in Table 5-2. These values were chosen after
observing the effect of the parameters after several runs of the EL.

Table 5-1: Table showing parameter values for the EL run

Parameter Value

Max Number of Generations (G) 150
Population size (M) 100
Tournament selection size (s) 6%
Elitism rate (Pe) 4%
Crossover rate (Pc) 80%
Mutation rate (Pm) 20%
Headless-Chicken Crossover rate (Phcc) 20%
Maximum tree depth (Dd) 6
Maximum children (Dc) 6
No. of simulation runs per generation (k) 6

5-4 Optimisation Results

The main parameter which dictates the progress of the genetic optimisation is the mean
fitness of the individuals in the population. Figure 5-6 shows the population mean fitness as
well as the mean fitness of the best individual in each generation. It can be seen in Figure 5-6
that at least one member of the population is quickly bred to fly through the window quite
often. Additionally, as the the generations progress and new initialisations are introduced the
trees have to adjust their behaviour to be more generalised. The mean fitness also improves
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initially then settles out at around the 0.4 mark, the fact that this value doesn’t continue to
increase suggests that the genetic diversity in the pool is sufficient.
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Figure 5-6: Progression of the fitness score of the best individual and the mean of the population

The other main parameter which defines the proficiency of the BTs is the tree size. The mean
tree size of the population as well as the tree size of the best individual from each generation
is shown below in Figure 5-7.
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Figure 5-7: Progression of the number of nodes in the best performing tree and the mean of the
population
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This figure shows that the average tree size began at about 5000 nodes and initially increases
to 7000 before steadily dropping to around 1000 nodes around generation 50. The trees size
then slowly continues to reduce in size and eventually drops below 150 nodes. The best
individual in the population oscillated around this mean value. The best individual after 150
generations had 32 nodes. Pruning this final BT resulted in a tree with 8 nodes. This process
involves removing redundant nodes that have no effect on the final behaviour. A detailed
description of this pruning process can be found in Appendix C. The resultant BT structure
of the tree can be seen graphically in Figure 5-8.

Figure 5-8: Graphical depiction of genetically optimised BT. Colours highlight different phases
of the flight. x is the position of the centre of the window in frame, σ is window response value,
Σ is sum of disparity and ∆ is the horizontal difference in disparity

The optimised BT was put through the same validation set as used with the user-defined tree
to compare their performance. The genetically optimised behaviour had a performance score
of 88%. Figure 5-9 shows the progression of the validation success rate for the best individual
of each generation. It can be seen that the score quickly increases and oscillates around about
80% success. In early generations the variation of success rate from one generation to the
next is larger than later generations.
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Figure 5-9: Progression of validation score of the best individual of each generation

Figure 5-7 and Figure 5-9 suggest that that the population quickly converges to a viable
solution and then continues to rearrange the tree structure to result in ever smaller trees. The
fact that the best individual of each population does not improve much above the 80% mark
possibly identifies that the method used to expose the population to a generalised environment
is not sufficient. A method to make the initial conditions more ”difficult” is by employing
co-evolution of the initialisation as well as the robotic behaviour. This predator-prey type
co-evolution may improve results. Alternatively, the fact that the behaviour does not continue
to improve may also indicate that the sensory inputs used b the DelFly are not sufficient.
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The performance characteristics of the best individual from the optimisation as compared to
those from the user-defined BT is summarised below in Table 5-2. The optimised BT has
slightly higher success rate than the user-defined BT but with significantly less nodes. The
mean fitness is also better with the optimised BT, this difference can be more clearly seen in
Figure 5-10 which shows a histogram of the fitness of the two BTs.

Table 5-2: Summary of validation results

Parameter user-defined genetically optimised

Success Rate [%] 82 88
Tree size 26 8
Mean flight time [s] 32 40
Mean approach angle [◦] 21 34
Mean distance to window centre [m] 0.08 0.15
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Figure 5-10: Histogram showing the distribution of fitness performance of the genetically
optimised and user-defined behaviour for all initialisations of the validation

Figure 5-10 shows that when the user-defined tree is unsuccessful it typically has a very low
fitness unlike the optimised system which typically has a relatively high fitness when not
successful. This suggests that the user-defined tree has more failures in the wall avoidance
phase of the flight and crashes into the wall far away from the window. The optimised system
however seems to crash into the wall near to the window. To visualise this failure mode,
Figure 5-11 shows a plot of a successful and an unsuccessful initialisations of the optimised
BT.

Figure 5-11a shows that the behaviour correctly avoids collision with the wall, makes its way
to the centre of the room and then tracks into the window. Analysing the BT itself, the logic
to fly through the window is very simple, the tree can be separated into three phases:

• max right turn to evade walls if disparity is too high (unidirectional avoidance)
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(b) Path of an unsuccessful flight

Figure 5-11: Path of two flight initialisations of DelFly with the genetically optimised behaviour
(top-down view). Colours denote different decision modes: Green - window tracking; Blue -
default action in low disparity; Red - wall avoidance

• if disparity relatively low slight right turn

• when window detected make a moderate left turn

This very simple behaviour seems to have very good success however Figure 5-12c highlights
one pitfall of this solution. As the behaviour doesn’t use the location of the window in the
frame for its guidance it is possible to drift off centre and lose the window in frame and enter
a wall avoidance turn quite close to the wall resulting in a collision.

Figure 5-12 below shows that this behaviour generally has a longer time to success as a
result of the DelFly making more loops before it is in a good position to make its approach.
Additionally, the DelFly always approaches from the left of the window turning towards the
window from an angle, this results in the DelFly entering the window at a relatively sharp
angle and typically more towards the left side of the window than the user-defined behaviour.

These results show that based on the given fitness function and optimisation parameters the
genetic optimisation was very successful. The resultant BT was both smaller and better
performing than the user-defined tree. However, Figure 5-12 shows that the user-defined
behaviour performs better when looking at the secondary parameters that were not explic-
itly described in the fitness function. This result highlights that the genetically optimised
behaviour will optimise the fitness function so any parameters that the user wants to be
optimised need to be included in that fitness function.

Combining many differing and possibly contradictory performance parameters into one fitness
function can be difficult. A popular solution is to implement a multi-objective optimisation
such as the Pareto approach (Sbalzarini et al., 2000; Tan et al., 2001; Fehervari et al., 2013).
This approach often allows the user to optimise for multiple objective parameters simulta-
neously. This method could be used to implement a better trade-off scheme of generalised
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Figure 5-12: Distribution of secondary performance parameters for validation run

BT performance and tree size. The secondary parameters may also be included to promote
behaviour preferred by the user.

5-5 Extended Analysis

The results of the optimisation described earlier raises some interesting questions: how robust
is the optimised behaviour as compared to the larger user-defined behaviour to variation in
the environment?; What would happen if we let the optimisation run with drafts introduced in
the training runs?; what would result from genetically optimising the user-defined behaviour
structure?. We will try to briefly investigate these questions in this section.

5-5-1 Alternate Validation

Genetically optimised behaviour is often suitable only for the behaviour that it was exposed to
during its optimisation, in this section we investigate how the optimised behaviour described
earlier performs when subject to changes in the operating environment. Three tests where
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done where validation was conducted with the original behaviours under different environ-
mental or algorithmic changes. The first test involved validation with air drafts on, the second
involved a doubling of the run frequency of the BT decision making module and the final test
was done in a larger rectangular room in stead of the original square room.

The results of the test with random environmental drafts with maximum strength of 0.14m/s
are shown below in Table 5-3. It can be seen that the success rate of both behaviours is
reduced with the genetically optimised behaviour more significantly impacted by the drafts.

Table 5-3: Table showing performance parameter values for test with drafts

Parameter user-defined genetically optimised

Success Rate 76% 68%
Mean flight time [s] 37 43
Mean approach angle [◦] 24 30
Mean distance to window centre [m] 0.13 0.16

Table 5-4 shows the performance parameters for a validation run with the BT module
running at 10Hz increased from the original 5Hz. The user-defined behaviour showed a
marginal increase in performance suggesting that the original run frequency was sufficient
for the given task while highlighting that a higher run frequency is typically better. The
genetically optimised behaviour performance decreased slightly highlighting the fact that
the optimised behaviour is coupled to the decision speed as well as the environmental and
vehicular dynamics.

Table 5-4: Table showing performance parameter values for test with double decision frequency

Parameter user-defined genetically optimised

Success Rate 87% 75%
Mean flight time [s] 27 36
Mean approach angle [◦] 27 36
Mean distance to window centre [m] 0.08 0.13

To test the performance in a different room we changed the dimensions of the room to 8×16×3
and ran the validation process again. The results of the validation is summarised in Table 5-5.
These results show that the user-defined behaviour is significantly degraded and is actually
only successful in 21/250 simulation runs. This shows that the solution method selected by
the user is suitable for rooms of different geometry, in this case an augmented solution would
be required. It would require significant time for the user to redesign the behaviour for every
room geometry the DelFly is exposed to. This highlights the need for automated development
of behaviour. A benefit of EL is that the solution can be generalised for the room geometry
as well as other parameters such as visual texture and environmental and vehicular dynamics
simultaneously.

In general, these results highlight the fact that genetic optimisation will learn behaviour
for the environment it has been exposed to. To promote generalised robust behaviour the
optimisation must be presented with a wide range of differing environments that may be
encountered in reality.
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Table 5-5: Table showing performance parameter values for test with larger rectangular room

Parameter user-defined genetically optimised

Success Rate 8% 31%
Mean flight time [s] 22 35
Mean approach angle [◦] 23 32
Mean distance to window centre [m] 0.37 0.15

5-5-2 Genetic Optimisation with Drafts

In reality the DelFly will be subject to drafts and other localised air disturbances. We saw
earlier that the performance of the optimised behaviour drops slightly when exposed to drafts,
it is therefore interesting to investigate how the behaviour would have to change to cope with
this change in the environment.

To this end, the genetic optimisation was repeated for the fly-through-window with the drafts
activated for all simulations with a maximum draft velocity of 0.14m/s. The results of the
optimisation can bee seen below in the following figures.

Figure 5-13 and Figure 5-14 show a similar trends in a quick optimisation of performance and
tree size decay as seen with the original optimisation but the optimisation converges much
earlier. Taking taking a closer look at Figure 5-15, we can see the effect of overtraining is more
evident in this optimisation. More research should be done to investigate methods to reduce
this effect, possibly into an implementation of the pareto multi-objective fitness optimisation.
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Figure 5-13: Progression of the fitness score of the best individual and the mean of the population
throughout the genetic optimisation

5-5-3 Genetically Optimised User-Defined Behaviour

The user-defined BT was designed based on the desired behaviour of the DelFly but certain
deficiencies were identified in this behaviour such as being caught in corners. It is of course
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Figure 5-15: Progression of validation score of the best individual of each generation

possible to optimise the user-defined tree structure using the same EL techniques used to
optimise the random population of individuals. The tree structure will be kept fixed but
the values within the individual nodes are optimised applying micro-mutation only evolution.
The characteristic parameters used for the optimisation are defined below in Table 5-6.

The optimisation resulted in a BT with improved performance as can be seen in Table 5-7. The
success rate improved by 8% achieving almost perfect success record however the optimised
behaviour was quite different than the original behaviour designed by the user. Figure 5-16
shows that the distribution of the performance parameter values for for the validation is quite
different for the optimised BT than for the original in particular the window entry angle is
noticeably sharper and more tightly grouped.

Looking at the BT as shown in Listing 5.1, some changes to the effective behaviour can be
seen. The default action was to turn max right instead of straight flight as originally described.
The section of code used to hold the decision making of the DelFly when too close to obstacles
was set to such a high disparity that it would never be encountered in flight and therefore
was equivalently removed. The optimised tree did interestingly keep the bidirectional wall
avoidance behavioural feature as described in the original BT. With these changes the tree
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Table 5-6: Table showing parameter values for the GP run

Parameter Value

Max Number of Generations (G) 10
Population size (M) 100
Tournament selection size (s) 6%
Elitism rate (pe) 4%
Crossover rate (pc) 0%
Mutation rate (pm) 20%
Headless-Chicken Crossover rate (phcc) 0%
Maximum tree depth (Dd) 6
Maximum children (Dc) 6
No. of simulation runs per generation (k) 6

Table 5-7: Table showing performance parameter values for original and genetically optimised
versions of the user-defined behaviour

Parameter original genetically optimised

Success Rate 82% 94%
Mean flight time [s] 33 27
Mean approach angle [◦] 16 34
Mean distance to window centre [m] 0.09 0.1

could be equivalently pruned to 18 nodes instead of the original 22.

1 <BTtype >Composite <function >Selector <vars ><name >Selector <endl >

2 <BTtype >Composite <function >Sequence <vars ><name >Sequence <endl >

3 <BTtype >Condition <function >less_than <vars >75,1<name >DelFly <endl >

4 <BTtype >Composite <function >Selector <vars ><name >Selector <endl >

5 <BTtype >Composite <function >Sequence <vars ><name >Sequence <endl >

6 <BTtype >Condition <function >less_than <vars >-0.1,0<name >DelFly <endl >

7 <BTtype >Action <function >turnRate <vars >-0.5<name >DelFly <endl >

8 <BTtype >Composite <function >Sequence <vars ><name >Sequence <endl >

9 <BTtype >Condition <function >greater_than <vars >0.66,0<name >DelFly <endl >

10 <BTtype >Action <function >turnRate <vars >1<name >DelFly <endl >

11 <BTtype >Action <function >turnRate <vars >0.01<name >DelFly <endl >

12 <BTtype >Composite <function >Sequence <vars ><name >Sequence <endl >

13 <BTtype >Condition <function >less_than <vars >104,2<name >DelFly <endl >

14 <BTtype >Action <function >turnRate <vars >1<name >DelFly <endl >

15 <BTtype >Condition <function >greater_than <vars >376,2<name >DelFly <endl >

16 <BTtype >Composite <function >Sequence <vars ><name >Sequence <endl >

17 <BTtype >Condition <function >greater_than <vars >60,2<name >DelFly <endl >

18 <BTtype >Composite <function >Selector <vars ><name >Selector <endl >

19 <BTtype >Composite <function >Sequence <vars ><name >Sequence <endl >

20 <BTtype >Condition <function >greater_than <vars >-0.2,3<name >DelFly <endl >

21 <BTtype >Action <function >turnRate <vars >1<name >DelFly <endl >

22 <BTtype >Action <function >turnRate <vars >-1<name >DelFly <endl >

Listing 5.1: DelFly genetically optimised user-defined BT for fly-through-window task. Lines
highlighted in red have been changed in the optimisation
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Figure 5-16: Distribution of performance parameters for original and genetically optimised
versions of the user-defined behaviour
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Chapter 6

DelFly Onboard Flight Testing

To investigate the impact of the BT to reduce the reality gap a real world test must be
carried out. This chapter describes the DelFly Explorer fly-through-window flight test set-up
and results. First, we will describe some of the differences between the simulation based
implementation of the BT framework and that used onboard in Section 6-1. This is followed
by a description of the 3D environment used for the flight test in Section 6-2. Section 6-3
presents the experimental set-up used in the flight tests. Finally the results of the flight tests
are presented and discussed in Section 6-4.

6-1 Onboard Behaviour Tree Implementation

The BT was implemented on the camera module of the DelFly Explorer which is equipped
with a STM32F405 processor operating at 168MHz with 192kB RAM. This processor is
programmed in the C programming language as opposed to the C++ implementation used
in simulation. As a result a slightly simplified version of the BT system was implemented
onboard.

The same node types and functionality was implemented as described in the previous section.
The main difference is seen in that the STM32F405 processor does not utilise a floating point
unit so all comparisons and value returns were changed to integer math. Tthe output of the
window detection algorithm is the pixel number of the centre of the window so the mapping of
[-1,1] in simulation is converted to [0, 128] on the DelFly. The sum and differences in disparity
are now scaled to 16 bit integers. The action node returned values mapped onto the space
[0, 255] where 0 was full left turn and 255 full right turn.

The BT node is placed in series with the stereo vision and window detection algorithms
and was found to run at ∼12Hz. The commands were sent from the camera module to the
DelFly Explorer flight control computer using serial communication. The DelFly flight control
computer reads this command at about 100Hz and scales the command onto the limits of
the aileron actuators.
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6-2 Test 3D Environment

The environment designed to test the UAV was a 5× 5× 2m room with textured walls. The
floor was simply a concrete floor and the ceiling was left open. A 0.8 × 0.8 m window was
placed in the centre of one wall. The area behind the window was a regular textured area. As
the focus of this work is on investigating the development behaviour of the DelFly and not
on the vision systems themselves, we added artificial texture to the environment to ensure we
had good stereo images from the DelFly Explorer onboard systems. This texture was in the
form of newspapers draped over the walls at random intervals. Sample photographs of the
room can be seen below in Figure 6-1.

(a) Photograph taken from (0, 0, 1) (b) Photograph taken from (0, 5, 1)

(c) Photograph taken from (0, 0, 2)

Figure 6-1: Photographs showing the room environment used to test the DelFly Explorer for the
fly-through-window task

6-3 Experiment Set-up

At the beginning of each run, the DelFly will initially be flown manually to ensure it is
correctly trimmed for flight. It will then be flown to a random initial position and pointing
direction in the room. At this point the DelFly will be commanded to go autonomous where
the DelFly flight computer implements the commands received from the BT. The flight will
continue until the DelFly either succeeds in flying through the window, crashes or the test
takes longer than 60s. As the BT controls the horizontal dynamics only, the altitude is
actively controlled by the user during flight, this was maintained around the height of the
centre of the window.

All flights are recorded by video camera as well as an Optitrack vision based motion tracking
system (NaturalPoint, Inc, 2014). The motion tracking system was used to track the DelFly
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as it approached and flew through the window to determine some of the same metrics of
performance that were used in simulation. As a result, information on the success rate, flight
time, angle of approach and offset to the centre of the window can be determined.

6-4 Flight Test Results

The flight speed of the DelFly was set to ∼0.5m/s, the same as was used in simulation apart
from this however there were significant differences observed between the DelFly simulated
in SmartUAV and the DelFly used in the flight tests. The most significant was that the
maximum turn radius was ∼0.5m much smaller than the 1.25m as in simulation. Additionally,
the ailerons on the DelFly Explorer had a faster response rate than the low pass filter set
on the rudder dynamics in simulation. It was also observed that the aileron deflection was
not symmetrical, the DelFly would turn more effectively to the right than it did to the left.
Aileron actuation would also result in a reduction in thrust meaning that active altitude
control was required from the user throughout all flights. It was also observed that there
were light wind drafts observed around the window which affected the DelFly’s flight path.
This draft would typically slow the DelFly forward speed slightly and push the DelFly to one
side of the window.

With these significant differences between the model used to train the BTs and the real DelFly
there as a clear reality gap present. Initially both behaviours were not successful in flying
through the window, the behaviour thresholds had to be adjusted to ensure that the DelFly
would behave similar to that in simulation. This was done first for the user-defined behaviour,
the updated behaviour can be seen in Figure 6-2. It was required to adjust the turn rate set
points to try to achieve a more symmetrical wall avoidance behaviour. Due to the different
environment in reality the window response at which the DelFly started its window tracking
was also raised slightly. The threshold at which the DelFly started its wall avoidance was also
changed to ensure the DelFly could evade walls. These changes helped push the behaviour
in reality towards that observed in simulation. In total, it took about 8 flights of about 3
minutes each to tune the parameters of the behaviour.

Figure 6-2: Graphical depiction of user-defined BT after modification for real world flight. Red
boxes highlight updated nodes. x is the position of the centre of the window in frame, σ is
window response value, Σ is sum of disparity and ∆ is the horizontal difference in disparity
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A similar process was done for the genetically optimised behaviour. As the parameters for
the wall avoidance was the same for both behaviours, the changes to this could be done before
any flight tests. As a result, only the window tracking turn rate, default turn rate and the
window response values had to be tuned. These parameters took about 3 flights to tune to
result in behaviour similar to that seen in simulation. The updated behaviour can be seen in
Figure 6-3.

Figure 6-3: Graphical depiction of genetically optimised BT after modification for real world
flight. Red boxes highlight updated nodes. x is the position of the centre of the window in frame,
σ is window response value, Σ is sum of disparity and ∆ is the horizontal difference in disparity

After an initial training session where the thresholds were re-optimised to real flight, 26 test
flights were conducted for both the user-defined behaviour as well as the genetically optimised
BT. The results of the tests are summarised below in Table 6-1.

Table 6-1: Summary of flight test results

Parameter user-defined genetically optimised

Success Rate [%] 46 54
Mean flight time [s] 12 16
Mean approach angle [◦] 16 37
Mean distance to window centre [m] 0.12 0.12

It can be seen that the success rate of both behaviours is reduced success rate but the other
performance parameters are similar to that seen in simulation. The relative performance
of the behaviours is also similar to that seen in simulation. The mean flight time of the
behaviours was reduced but notably the relative flight times of the behaviours is the same as
seen in simulation. The reduction in the time to success can be explained by the reduced room
size and increased turn rate of the DelFly seen in reality as opposed to that in simulation.

The mean angle of window entry is also similar to that observed in simulation. The mean
distance to the centre of the window was higher for the user-defined behaviour than seen in
simulation. This can be as a result of the drafts seen around the window pushing the DelFly
to the edges of the window in the last phase of the flight when the window was too close to
be in view. This conclusion is reiterated in Figure 6-4 which shows the distribution of the
performance parameters for the successful flights of both behaviours. Figure 6-4c shows a
more randomly distributed entry location than that seen in simulation. Figure 6-4a shows a
more tightly grouped time to success than in simulation which is as a result of the smaller
test area. Figure 6-4b shows that the angel of entry of the genetically optimised behaviour is
grouped quite similarly to that seen in simulation while the distribution of the user-defined
behaviour is more distributed. The increased distribution seen in Figure 6-4b and Figure 6-4c
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Figure 6-4: Distribution of secondary performance parameters from flight test

could also be as a result of the significantly smaller statistical data set used for the real flight
test than that as a result of the simulation.

The failed flights of both behaviours can be characterised into 3 types: hit right side of
window ; hit left side of window ; hit wall in other part of room. Table 6-2 below shows the
frequency of the failure modes for each behaviour. Notably, the user-defined behaviour showed
similar failure as seen in simulation characterised by being caught in corners, this happened
4/26 flights for the user-defined behaviour but not once in the genetically optimised behaviour.

Table 6-2: Summary of flight test failure cases

Failure Case user-defined genetically optimised

Hit right side of window 8 5
Hit left side of window 2 7
Hit wall 4 0

The Optitrack flight tracking system did not successfully track the DelFly in all portions of the
room resulting in some dead areas but did accurately capture the final segment of the window
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approach. Figure 6-5 shows the last 7s of the user-defined behaviour for all flights grouped in
successful and unsuccessful tests. These plots show that the DelFly tried to approach and fly
through the window from various areas of the room at various approach angles. Approaches
from areas of high approach angle typically resulted in a failed flight as the DelFly would hit
the edge of the window. Additionally, the crashes in the wall due to being caught in corners
can also be seen. Figure 6-6 show typical flight paths of successful and unsuccessful flights of
the user-defined behaviour in more detail.
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Figure 6-5: Flight path tracks of the last 7s of all flights for the user-defined behaviour
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Figure 6-6: Flight path tracks showing a sample failure and success flight case for the user
defined behaviour. Red track shows area where tracking system lost lock of the DelFly

Similarly, Figure 6-7 shows the successful and unsuccessful flights of the genetically optimised
behaviour as captured from the Optitrack system. In these figures it can be seen that the
flight tracks of genetically optimised behaviour are tightly grouped with the same behaviour
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repeated over multiple flights. The DelFly always approaches from about the centre of the
room with a coordinated left-right turn described earlier. It can be seen that some of the
unsuccessful flights occur when the DelFly makes an approach from farther way than normal
so the coordination of the left-right turning is out of sync causing the DelFly to drift off course
and hit the window edge. Figure 6-8 show typical flight paths of the genetically optimised
behaviour in more detail. The typical failure mode was turning into the edge of the window
in the final phase of the flight.
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Figure 6-7: Flight path tracks of the last 7s of all flights for the genetically optimised behaviour
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Figure 6-8: Flight path tracks showing sample failure and success flight case for the genetically
optimised behaviour. Red track shows area where tracking system lost lock of the DelFly

The failure mode of hitting into the window edge for both behaviours can be in part the
result of the drafts observed around the window or in part due to the lack of detailed texture
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around the window. These external factors would affect the two behaviours equally so would
not affect the comparison of behaviours.

The fact that the behaviours where not initially able to fly through the window and were
able to fly through more than 50% of the time after user optimisation shows that the reality
gap was actively reduced by the user. These results show that it is feasible to automatically
evolve behaviour on a robotic platform in simulation using the BT description language.
This method gives the user a high level of understanding of the underlying behaviour and the
tools to adapt the behaviour to improve performance and reduce the reality gap. Using this
technique an automated behaviour was shown to be as effective as a user-defined system in
simulation with similar performance on a real world test platform.
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Chapter 7

Conclusion

In this thesis, we performed the first investigation into using Behaviour Trees for Evolutionary
Robotics. A particular focus was whether the BT would help reduce the reality gap when
transferring the controller evolved in simulation to a real robot. The presented experimental
results show that the genetically optimised behaviour tree had a simulation based success
rate of 88%, slightly better than user-defined behaviour at 82%. When moving the behaviour
to the real platform, a large reality gap was observed as the success rate dropped to almost
nil. After user adaptation, the genetically optimised behaviour had a success rate of 54%.
Although this leaves room for improvement, it is higher than 46% from a tuned user-defined
controller.

These results show that it is feasible to automatically evolve behaviour on a robotic platform
in simulation using the BT encoding language. This method gives the user a high level of
understanding of the underlying behaviour and the tools to adapt the behaviour to improve
performance and reduce the reality gap.

We aimed to answer the research question: How can a Behaviour Tree framework be used
to develop an effective automatically generated Artificial Intelligence UAV control system to
reduce the reality gap of simulation trained systems?

This work has two main contributions, namely: a Behaviour Tree was implemented on a
airborne robotic platform to perform a window search and fly-through task all on the basis
of onboard sensors and processing; the ability to reduce the reality gap of robotic behaviour
using Behaviour Trees was effectively demonstrated.

Future work will attempt to improve on the final success rate of 54%. The use of an onboard
turn rate controller and further investigation into the Evolutionary Learning techniques used
should help to improve the real world performance. Additionally, although this method was
applied to a singular, arguably rather simple task it is not limited to such tasks. The inherent
hierarchy of the BT framework lends itself naturally to building more complex behaviour
from a combination of simple behaviours. The simple behaviours, as well, as the combination
of simple behaviours can be determined using the same EL technique. This hierarchical
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combination of tasks can be utilised to reduce the search space optimised by the learning
algorithm.

The use of BTs as a behaviour encoding framework gives the user increased flexibility and
scalability of robotic behaviour facilitating further development. This tool can be very useful
in future robotic behaviour development.
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Chapter 8

Recommendations

General The modular design and make-up of behaviour trees as a directed graph lends itself
naturally to the use of a visual editor to create and edit the tree design. Future research
should go into a Graphical User Interface (GUI) to provide users with an intuitive method
to understand and interactively design BTs, this will add many possible advances to a user’s
fault detection and comprehension as well as adding advanced debugging tools to the BT
implementation.

The main aim of this paper was to show that the BT encoding framework can be a useful tool
for a user to reduce the reality gap of a simulation trained robotic behaviour. Although this
was successful, it was also shown that the solution behaviour for a particular task is strongly
coupled to the dynamics of the vehicle and environment. Based on this observation, it may
be possible that the reality gap between the optimised solution and reality requires a different
solution behaviour. This observation validates other research done on reducing the reality
gap which states that the simulation should accurately reflect reality in order to have a valid
solution emerge from the optimisation.

The BT is comprised of many nodes with parameters that have to be tuned from simulation
to the real world platform to reduce the reality gap. Some of these parameters are more
important to the final effective behaviour of the platform than others. To help highlight to
the user which nodes are critical to the behaviour a sensitivity analysis should be performed.
This analysis will also identify parts of the behaviour that may be affected by additional
parameter noise that may occur on the real platform.

Future research should investigate how this system can be implemented in a safety critical
manner either by investigating the flow of the tree itself as described by (Klöckner, 2013b) or
by having some safe fall back behaviour for the guidance system to default to.

BT Implementation The behaviours evolved in this paper were strictly reactive in that no
internal state was explicitly stored in the tree, this however could be easily added to the tree
using the shared BlackBoard. Simple state parameters such as timers and memory could be
added to the tree. This could be used to improve the agent’s ability to handle discrete events
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or to some precept history. Additionally, the action nodes were limited to lateral only control,
it would be interesting to investigate the effect of adding altitude control to this as well.

One parameter which heavily influenced the reality gap was the effective turn rate of the
DelFly. The BT should control parameters that are more robust to environmental changes.
It may be more effective to control the turn rate operating within a control loop rather than
the aileron setting directly.

Evolutionary Learning Implementation This paper showed only a limited investigation into
the effect of the genetic parameters on the learning process. As the recombination of BTs is
quite complex, more detailed analysis is required to determine what the true effect of each
parameter on the learning process. It is also interesting to investigate adaptive evolutionary
parameters, where the optimisation starts with crossover intensive operation which gradually
reduces as the general structure converges and gradually switches to mutation intensive
operations.

The current approach to the BT genetic combination in this paper has seen that little domain
specific knowledge of the task or the BTs themselves is used. These operators were applied to
random nodes in the BT regardless of the node type, these operation will therefore inevitably
result in some nodes in the BT being redundant or not effective to the final effective behaviour
exhibited by the robotic platform.

The intention was that by not adding task specific knowledge to the genetic operators the
converged solution is truly emergent and not steered by the human designers. This does
however result in bloat making trees more complex. This can be remedied by pruning the
BTs. Pruning was applied to the evolved trees to make them more legible to the user. This
pruning process can be automated to apply simple rules to remove redundant nodes from the
BTs. The influence of pruning the trees during the evolution process can also be investigated.

The variables changed in the optimisation were limited only to initial position and orientation,
additional parameters may be useful to promote more general behaviour from the EL. Rooms
with different shapes and environmental textures as well as changes to environmental and
vehicle dynamics which are more representative of reality should aid the development of
effective behaviour.

Simulation runs of each individual in a single generation are not dependent on any other indi-
vidual in that population which makes the simulation of individuals, lending itself inherently
to parallelism. Spreading the computational load of the simulations over multiple platforms
would reduce the total time to optimise the BTs significantly.

It was observed in the EL that is important to promote generalised behaviour and to do that
a wide variety of environmental parameters must be varied. In this work the initial position
and pointing angle were varied and randomly changed as the population evolved to succeed.
Rather than a strictly random mechanism to select changes in the environment for testing a
more directed method may be useful. One method is co-evolution of the behaviour and the
environment in a predator prey type of construct. The agent behaviour is evolving to increase
the performance within the environment whilst the environment is evolving to make it more
difficult for the agent to succeed.
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DelFly During flight testing it was observed that the DelFly expressed asymmetrical control
effectiveness when actuating the ailerons. This resulted in the DelFly turning faster to one
side than the other with the same actuator deflection. This problem could be reduced by
implementing a rate control loop onboard the DelFly and have the BT mission manager send
rate set point commands to the DelFly instead of directly setting the actuator deflection angle.
This rate control loop would also have the added advantage of increasing the lateral stability
of the DelFly. Additionally, a height loop should also be added to the DelFly to maintain
the flight altitude during testing. Future management systems could then set a climb rate set
point for the DelFly to track.

The implementation of the window detection algorithm produces an estimate of the size of
the window in the image. This parameter may be useful information for the DelFly to base
its behaviour. It could be used to refine an estimate for the distance from the window or
determine if the window is large enough for the DelFly to fit though.

The final success rate of 54% is not very high and can be the result of many factors which
should be investigated. Some of these include the sensors and algorithms used as well as the
implemented control strategy. Additionally, future flight tests should be conducted in a more
deterministic setting where environmental variables, such as drafts, are controlled or at least
measured for comparison.

SmartUAV Initially developed to investigate the real time interaction of software modules
and human-in-the-loop interfaces, SmartUAV was not intended to be used for fast time
simulations. Some changes would be required to make the software more suitable for this
purpose in the future. It is proposed that all modules should be timed to a virtual clock that
is independently updated by a user-defined frequency. This would ensure that all modules
scale in speed at the same ratio.

Another issue with the multi threaded framework of SmartUAV is that there is no guarantee
that each module is loaded and running together. It is possible that one module is loaded
and starts running before the others are. This delay is typically quite small but in fast time
the delay could be problematic. There should be a guarantee that modules are only allowed
to progress once all required modules are loaded.
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Appendix A

Extended Literature Review

Much of the recent research GNC has been in an effort to improve the automation of flight
platforms. These tools must be combined and controlled by a flight management system which
makes automated decisions as to what actions are to be taken by the vehicle. Advanced tools
are needed to facilitate the development of mission management and guidance systems in
the future. This chapter aims to present a detailed overview of the current state of the art
currently implemented and in development across many fields with the general theme of AI.
The results of this literature review will be used to define the final research objective of this
thesis research.

We start by giving an overview of the different forms of AI in Section A-1. An overview of
planning techniques used by AI is given in Section A-2. Section A-3 goes on to discuss the
most popular implementations of AI in machine control. Finally an overview of popular flight
management systems is detailed in Section A-4.

A-1 Artificial Intelligence

This section presents some background information of AI systems mainly adapted from Russell
& Norvig (2009). The term AI has been used to refer to many types of automated systems
but in academia it can be separated into four main definitions, as defined by Russell & Norvig
(2009), AI is a system that:

• thinks like humans

• acts like humans

• thinks rationally

• acts rationally

In this paper, we will refer to an AI agent with the last definition, i.e an agent that acts
rationally. An agent is simply something that acts, it perceives its environment with the
use of sensors and acts on its environment through actuators. Percept is defined as the
agents perceptual inputs at any given time. A perceptual sequence is the complete history
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of everything the agent has ever perceived. A generalised representation of an agent can be
seen in Figure A-1.

Figure A-1: Generalised representation of an agent (Russell & Norvig, 2009)

A rational agent is one that acts so as to achieve the best outcome. Rationality in time is
based on the performance measure that defines the criteria for success: the agent’s knowledge
of its environment; the actions it can perform and; the agent’s percept sequence.

A-1-1 Types of AI

There are different forms of agents which have differing levels of rationality, these are listed
and described below.

Simple reflex agents These agents act only on the basis of the current percept, ignoring
the rest of the percept history. The agent function is based on the condition-action rule: if
condition then action. These type of agents are typically used in fully observable environments
to avoid the possible precept ambiguity caused by input aliasing. Recent research has shown
however, that sensor pattern aliasing is not as disadvantageous as previously considered.
Nolfi (2002) shows that agents can use their own interaction with the environment to extract
additional information to remove the ambiguity of the sensor input pattern referred to as
sensory-motor coordination. Performing actions which make it easier to distinguish sensory
patterns is referred to as active perception.

Model-based reflex agents One way to handle the problems simple reflex agents operating
in partially observable environments is for the agent to have some concept of its internal
state. This state is dependent on the percept history that can be used to infer part of the
unobserved aspects of the current state. Updating the internal state of the agent typically
requires information of how the environment is evolving and the effect of the agent on the
world, this implies that some form of model of the world is required.
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Goal-based agents This differs from the simple reflex agent in that it considers the future
in two ways: what will be the results of the agent’s actions and what actions will help achieve
the agent’s goal. This gives the agent a form of reasoning and therefore does not require
direct state-action mapping that limits the reflex agents. These agents choose the most
appropriate action which will allow it to achieve a defined goal by use of a model describing
its environment. Search and planning are the fields of artificial intelligence devoted to finding
action sequences that achieve the agent’s goals. A general goal-based agent can be seen in
Figure A-2.

Figure A-2: General model of a goal-based agent (Russell & Norvig, 2009)

Goal-based agent are less efficient than a model-based reflex agent as the most rational action
must be determined by considering more variables but it is typically more flexible because
the knowledge that supports its decisions is represented explicitly and can be modified.

Utility-based agents To generate high quality behaviour there must be some measure of
how desirable a certain state is with reference to achieving the final goal of the agent. This
can be represented by a utility function which maps a state to a measure of the utility of the
state, where utility is the quality of being useful. A rational utility-based agent selects the
action that maximizes the expected utility of the action outcomes, given the probabilities and
utilities of each outcome. Figure A-3 shows a general utility-based agent.

This type of agent is very useful when the agent has to consider multiple, possibly conflicting,
goals each with a given success certainty. Any true rational agent must behave as if it has a
utility function, whether it is explicitly defined or not.

Learning agents Manually defining the behaviour of complex agents may be infeasible for
programmers and it can be desirable that the agent learn behaviour as it interacts with its
environment. A learning agent can be separated into four conceptual components which can
also be seen in Figure A-4:

• Critic - Determines how the performance of the agent should be changed to improve
its utility and provides this information as feedback to the learning agent
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Figure A-3: General model of a utility-based agent (Russell & Norvig, 2009)

• Learning agent - Responsible for making improvements

• Performance element - Responsible for selecting external actions.

• Problem generator - Suggests actions that lead to a new and informative experiences.

The learning element is dependant on the performance element used and is therefore typically
designed afterwards. The critic gives feedback to the learning element how well it is performing
with regard to some utility function. This is important as the precepts do not typically provide
enough information to the performance of the agent. Problem generators suggest exploratory
actions that mat perhaps result in optimal actions in the short term but may result in better
actions long term.

Figure A-4: General model of a learning agent (Russell & Norvig, 2009)

As learning agents are interesting to the study of advanced AI, the next section will investigate
these type of AI agents further.
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A-1-2 AI Learning

Manually encoding a complex multifunctional AI agent can be a difficult and very time
consuming process and sometimes may just not be possible due to the limited knowledge of
the system in which the AI will be operating in. As the tasks performed by robotic agents
increase in complexity it is becoming ever more useful that AI can learn to improve its
performance automatically. The ability for an AI agent to automatically adapt its behaviour
is also very useful when operating in a changing environment. This section aims to summarise
some background information behind machine learning techniques and discuss some of the
methods in which they are implemented.

Firstly, we would like to define the difference between adaptation and learning as made by
Arkin (1998). Adaptation is generally a process by with the agent gradually changes its
behaviour to accommodate its environment improving its performance without substantial
changes to the main behaviour structure. They go on to define three main categories of
adaptation:

• Behavioural Adaptation - An agent’s individual behaviours are adjusted within an
individual

• Evolutionary Adaptation - Descendants change over long time scales based on the
success or failure of their ancestors in their environment

• Sensor Adaptation - An agent’s perceptual system becomes more attuned to its
environment

Arkin (1998) goes on to define learning as more of a fundamental change to the knowledge
base or representational structure of the behaviour of the AI. For example this may involve
introducing new knowledge into the system, characterising a system or generalizing concepts
from multiple exams. Learning methods can be differentiated on a scale of level and source of
information contained in the feedback of the critic. This feedback is a form of Supervision and
learning can be placed on a gliding scale from Supervised Learning to Unsupervised Learning.

In unsupervised learning, the information available to the agent for learning is typically
restricted to the input data only and no indication of what the optimal goal state is. The
performance of the agent is determined by a critic and this performance information is then
feed back to the agent. This type of learning is sometimes used to find trends or patterns in
data. In supervised learning, not only is the input and the output data of the agent available
to it but the optimal or required output is also defined. All learning systems fall somewhere
on the spectrum between these two extremes.

Arkin (1998) identified the following mechanisms which can be used to learn behaviour in AI:

• Reinforcement Learning - Rewards are given to the AI to adjust numeric values in a
controller through trial and error based on a value function which evaluates the agents
utility.

• Evolutionary Learning - AI controllers are derived deductively by alterations to an
initial population of program code using genetic operators based on the utility of the
population computed by use of a fitness function.
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• Learning by Imitation - A form of learning similar to the way animals learn by being
shown how to achieve a task.

We will investigate a little further into these methods to gain some insight into how learning
can be implemented.

Reinforcement Learning

Reinforcement Learning (RL) is built on the fundamental idea of Thorndike’s ”Law of Effect”
where the application of a reward or punishment after an action will increase the probability
of its recurrence reinforcing causative behaviour. The reward is applied by a component called
a critic which evaluates the agent based in its performance measured by some metric. The
agent tries to modify its behaviour in order to maximise its reward. An overview of the RL
framework can be seen in Figure A-5.

Figure A-5: Graphical representation of Reinforcement Learning framework

RL is a very useful tool used extensively to adapt control system responses but it comes
with some pitfalls. One constant difficulty is how the critic is defined when evaluating
multiple objectives. As the critic gives one feedback value based on the overall performance
of the agent, it is difficult for the agent to optimise for each objective individually but rather
optimises itself based on its overall performance so the definition of the critic is critical to
the performance of the agent. There are many implementations of RL, however there are
three fundamental methods used to solve RL problems: Dynamic Programming; Mone-Carlo
Methods; and Temporal-Difference Learning (Sutton & Barto, 1998).

Evolutionary Learning

EL techniques are a form of heuristic search where the search space is defined as a population of
feasible solutions which are slowly evolved by use of genetic operators. Heuristic methods are
likely to converge towards a good feasible solution but is not necessarily the optimal solution
(Hiller & Lieberman, 2010). These optimization techniques are typically applied to problems
which are are sufficiently complex that it is infeasible to be tackled by non-probabilistic
algorithms so a near optimal solution is generally sufficient. An overview of metaheuristic
methods can be seen in Figure A-6.

1http://en.wikipedia.org/wiki/File:Metaheuristics classification.svg, obtained on: 27-06-13
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Figure A-6: Summary of metaheuristic search methods 1

A-2 Task Planning

Planning can be loosely defined as the process of determining the sequence of actions required
to achieve a goal. There are many different ways to implement this planning and differing ways
of representing the planning domain. In this subsection we will first give a brief introduction to
classical planning and an overview of the most popular planning techniques, this elaboration
is primarily adapted from Ghallab et al. (2004) and Nau (2007).

Classical Planning Framework

Planning problems are traditionally described using classical planning system, which uses
a state-transition or discrete-event system models. These systems are defined as a 4-tuple
∑

(S,A,E, γ) where S = {s0, s1, s2, . . . } is a set of discrete states, A = {a1, a2, . . . } is a set
of actions, E = {e1, e2, . . . } is a set of events and γ : S × (A ∪ E) → 2S is a state-transition
function. In the classical planning domain, these systems are subject to the following set of
assumptions:

Finite
∑

- The system has a finite set of states

Fully observable
∑

- The agent has complete knowledge about the state of
∑

Deterministic
∑

- every state s and event action u , |γ(s, u) ≤ 1

Static
∑

set of events E is empty so the system has no internal dynamics

Behaviour Trees for Evolutionary Robotics K.Y.W. Scheper



84 Extended Literature Review

Attainment Goals - The only type of goal is an attainment goal, which is an explicit
goal state or set of states Sg. This assumption excludes, for example, states to be
avoided, utility functions or constraints

Sequential Plans - A solution to the planning problem is a linearly ordered finite
sequence of actions

Implicit Time - Actions and events have no duration

Offline planning - The system does not consider changes to the system
∑

while the
system is planning ignoring any current dynamics.

Classical planners consider static systems only so the system can be reduced to a 3-tuple
system

∑

(S,A, γ) where γ : S ×A→ S2.

The assumptions in this planning domain are quite restrictive and most systems require a
relaxation of some of these assumptions to fully represent and solve a planning problem. Some
of the techniques used to solve planning problems are discussed here.

Planning Domains

Automated planning systems can be classified into categories based on the domain in
which they operate, namely: domain-specific planners, domain-independent planners, and
domain-configurable planners. Domain-specific planners are specially designed for use in a
given planning domain and are unlikely to work in other domains unless significant changes are
made to the planning system. In domain-independent planning systems, the only input is a de-
scription of a planning problem to solve, and the planning engine is general enough to work in
any planning domain that satisfies some set of simplifying assumptions. Domain-configurable
planners are planning systems in which the planning engine is domain-independent but the
input to the planner includes domain-specific knowledge to constrain the planner’s search so
that the planner searches only a small part of the search space.

Whilst all of these planners have large theoretical benefits, the assumptions made in the
domain-independent planner are typically too restrictive to be useful in practice. The
domain-configurable planners are used more often in practice than domain-specific planners as
they are easier to configure and maintain as standard tools can be used to build the planner.

Planning Methods

Plans can be synthesised by using one of three main types of search algorithms: State-Space
Planner; Plan-Space Planner or; Planning Graph. These methods will be summarised below.

State-Space Planner

The simplest planning technique is State-Space Search. This planning problem consists of
nodes which represent a given state of the environment, arcs connecting these nodes are
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considered possible state transitions and a plan is a path through the state-space. The search
space is therefore a set of the state space. This representation is used in state machines and
many other systems where there are discrete transitions between states in the environment. As
the number of states and transitions increase, this representation can become quite complex
and must be combined with advanced planning techniques to be useful.

There are many forms of search algorithms that are used to find a planning solution, one
of the simplest is the Forward Search. As the name suggests, it is a search algorithm that
searches the state space for a plan that starts at the current state and ends at the goal state.
This method is non-deterministic with input P (O, s0, g) of planning problem P, where O is
a set of planning operators consistent of the action set A and g are preconditions of the goal
state. Forward search algorithms are sound, i.e any plan π returned is a guaranteed solution
to the planning problem.

The opposite approach is the Backward Search, this algorithm starts at the goal state and
applies inverses of the planning operators to produce goals, stopping if a set of goals are
produced which satisfied by the initial state. The inputs are the same as for the Forward
Search and is also sound and complete.

Another algorithm worth noting is the Stanford Research Institute Problem Solver (STRIPS),
this is an algorithm which uses a standard Planning Domain Definition Language (PDDL)
to describe the planning domain. It is similar to Backward search but differs in that it only
evaluates goals eligible based on the preconditions of the last operator added to the plan.
This reduces the search space hence improving the efficiency of the search. Additionally, if
the current state in the STRIPS plan meets the preconditions of all the operators, it commits
to this plan and does not backtrack. This commitment makes STRIPS an incomplete planner,
i.e. no guarantee to find solutions for solvable systems, solutions often not optimal.

Plan-Space Planner

This method is typically a more general planning technique than the state-space planner. The
planning space consists of nodes which are partially specified plans and arcs are refinement
operations used to further complete a partial plan. The planner begins with an empty plan
node and builds on this till a path from the current state to the goal state is found and returns
a partially ordered plan which solves the planning problem. Main idea of plan space planning
is the least commitment principle, i.e refine one flaw at a time assigning only ordering and
binging constraints to solve that flaw.

This technique differers mainly from the state-space search in that instead of simply making
a sequence of actions, plan-space planners separate the planning domain into two distinct
choices: the action to be applied, and the ordering of the actions to achieve the goal. As only
one flaw is fixed a time, the interaction between actions and goals can be addressed by taking
into account the causal links in the system.

The plan-space planner is a generalisation of the state-space planner where the number of
states in the plan-space are infinite and intermediate states in the state-space are explicit.
Plan-space planners are very powerful but are typically very computationally intensive due
to the high level of complexity.
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Planning Graph

The middle ground between state-space and plan-space planning is the Planning Graph, this
technique returns a sequence of partially ordered sets of actions. This is therefore more general
than a sequence of actions but less general than a partially ordered plan.The planning graph
approach relies mainly on reachability analysis and disjunctive refinement.

Planning graphs take strong commitments while planning actions are considered fully instan-
tiated at specific steps rely on reachability analysis and disjunctive refinement. Reachability
analysis is a state reachable from some given state s0 (Γ̂(s0)). Disjunctive refinement addresses
one or several flaws through disjunction of resolvers.

In short, the planning graph operates recursively where a planning graph is created incre-
mentally increasing the number of levels until a solution is found. A backwards state-space
search is performed from the goal to try to find a solution plan, but the search is restricted
to include only the actions in the planning graph. The Backward Search has dramatically
increased computational efficiency as it is restricted to operate within the Planning Graph,
the resulting solution can be computed in polynomial time. As a result, Planning Graph
techniques, like GraphPlan, significantly faster than plan-space planning algorithms.

A-3 AI Implementation Techniques

Every agent must analyse its precepts and through some process determine the rational action
that needs to be taken. The agent’s input is the knowledge of the environment developed
though its precept history and the output is an action request. This process can be formulated
in many different ways, this section will describe a few of the more popular methods along
with their respective benefits and drawbacks.

A-3-1 Decision Trees

The mapping between a given knowledge input and the corresponding output of an agent can
be quite complex, one way to simplify this is to break the mapping into a matrix of simple
choices which can be combined in such a way as to describe a complex system. An example
of a Decision Tree can be seen in Figure A-7.

Decision Trees originate at a root node and propagate down the tree along links evaluating
decisions until no choices remain. Nodes that have no downward links are called leaf nodes
and are attached to actions. Most decision nodes make a binary decision between two nodes
which makes evaluating the choices computationally light. It is possible to combine decisions
in such a way to mimic more complex behaviour such as apparent boolean logic.

The simplification of the overall decision making into a series of simple choices makes decision
trees a fast, easily implemented and simple to understand modelling technique. The use
of standard nodes makes Decision Trees very modular and easy to create. This simple
decomposition of choices in a tree however, also results in the fact that the tree will contain
many more decisions than are actually needed to determine the appropriate action, this can
be seen when you propagate down the tree only one branch will be used while the tree has
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Figure A-7: Typical decision tree diagram (Millington & Funge, 2009)

many more branches not currently used requiring in a repetition of behaviour within the tree
structure.

A balanced tree is one that has an equal number of decision nodes between the root node
and the leaf nodes. A balanced tree will propagate with O(log2n) decisions, where n is the
number of decision nodes in tree. It can be seen that a very unbalanced tree will result in a
degrading of this to O(n).

A fuzzy implementation of decision trees has been used to model the behaviour of a UAV as
showed by Smith & Nguyen (2007). This shows that this method is indeed practical for real
flight platform implementation.

A-3-2 Finite State Machine

This decision making technique is built on the idea that the agent will occupy one particular
state at any given time where each state is attached to an accompanying action, the agent
will perform this action until an event or condition occurs to change the state of the agent.
The connections between states are called transitions, each transition connects one state to
another. When a transition is activated by an event it said to be triggered, once a transition
has occurred it has been fired. Separating the transition and the firing of a transition
allows transitions to have their own actions making them useful tools. An FSM is therefore
completely defined by a list of its states, transitions and the triggering condition for each
transition.

Unlike Decision Trees, State Machines not only take into account the environment but also
their internal state. State Machines are depicted using a UML state chart diagram format
(Harel, 1987). A typical FSM state chart can be seen in Figure A-8.

FSM are studied extensively in Automata Theory, in theoretical computer science this is the
study of mathematical objects called abstract machines or automata and the computational
problems that can be solved using them (Hopcroft et al., 2000). This means that there has
been extensive research done into optimising the operation of FSM and there are many tools
widely available to aid in their design.
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Figure A-8: Example of typical finite state machine (Millington & Funge, 2009)

There are many ways to implement an FSM depending on its final use, these implementations
are typically quite easy to design and implement. All of these implementations however
suffer from the same inherent problem, state explosion. As the number of states increase the
apparent complexity of the system increases disproportionately. To illustrate this, we will use
the example as described in Millington & Funge (2009) as shown in Figure A-9.

Figure A-9: Example of state explosion in FSM (Millington & Funge, 2009)

This state explosion means that maintaining large FSMs is very difficult due to the high level
of complexity. Additionally this method is not very flexible or modular as when a state is
added of removed all the transitions to and from the nodes typically must be recompiled
which can be cumbersome for complex agents. Methods can be used to dynamically link
state machine nodes at run-time but development of these methods can also be quite time
consuming. As a result FSM are typically only practically useful for agents which have a
limited set of actions required.
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A-3-3 Hierarchical Finite State Machine

The problem of state explosion can be addressed by introducing a hierarchy to the definition
of the FSM. States can nested in other states in a hierarchical order such that the number
of state transitions in the FSM can be reduced significantly. Again we illustrate this from
an example from Millington & Funge (2009) where Figure A-10 shows that the apparent
complexity of the robot problem shown in Figure A-9 an be significantly reduced.

Figure A-10: Example of how HFSM can be used to address state explosion in FSM (Millington
& Funge, 2009)

HFSMs are quite efficient and operate with performance O(nt) where t is the number of
transitions per state. Now, although the HFSM is useful in reducing the complexity of the
agent as compared to the FSM it is still not very modular or flexible as the transitions between
states must still be hard-coded making advanced agents difficult to manage.

A-3-4 Hierarchical Task Network

This is an implementation method of automated planner used to generate a sequenced network
of actions to achieve some goal. This is interesting here as it uses hierarchy in a different
way than the HFSM. HTNs uses the concept of hierarchical decomposition to recursively
decompose a goal till a set of primitive operators are found which achieve the goal. Primitive
operators represent actions that are executable and can appear in the final plan. Non-primitive
operators represent goals that require further decomposition to be executed. Also, HTN differ
from HFSM in that the planner’s objective is described not directly as a set of goal states
but instead as a collection of tasks to be performed (Brooks, 1987). Figure A-11 shows an
example of the decomposition involved in an HTN.

To guide the decomposition process, the planner uses a collection of methods that give ways of
decomposing tasks into sub-tasks. This is typically done by using domain-specific knowledge
to create a set of rules for pruning the search space, thereby increasing the operational
efficiency of the planner (Nau, 2007).
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Figure A-11: A possible HTN task decomposition for building a house (Nau, 2007)

A-3-5 GraphHTN

This is a hybrid planning algorithm that performs HTN planning using a combination of
HTN-style problem reduction and planning graph generation using GraphPlan (Lotem &
Nau, 2000). The planning tree is an AND/OR tree that expresses all the possible ways to
decompose the initial task network using the HTN methods.

Like the GraphPlan algorithm, it incrementally increases the length of the plan being searched.
In each iteration of the algorithm, the planning tree is expanded by one layer by performing
only task decompositions that might generate actions for the current time step. Only the
actions that have been generated so far in that process are used for extending the planning
graph. When certain conditions hold, the algorithm starts to search for a solution within
the planning tree and the planning graph. This process is iterated until a solution is found.
GraphHTN produces plans in the GraphPlan format, where several actions may occur at the
same time if they do not interfere with each other. Like GraphPlan, the GraphHTN algorithm
is sound and complete, and is guaranteed to report the plan with the shortest parallel length
if a plan exists.

A-3-6 Goal Oriented Action Planner

The previous methods all address how to achieve a singular goal but if multiple goals are
present, it becomes more difficult for the agent decide what action will be the most appropriate
as some actions, although appropriate for one goal, may be detrimental to achieving other
goals. One solution to this problem is the Goal Oriented Action Planner (GOAP) which is a
type of utility-based agent where the utility of each action is determined using some heuristic
and the action giving the best overall utility is typically executed.

A model of the world is required to determine the consequence of an action to determine
the utility of an action or action set. Propagating this model for every available action or
action series can be computationally intensive for complex agents. Performance is O(nmk)
in time, where n is the number of goals, m is the number of possible actions and k is the
number of time steps considered. To increase the efficiency of the GOAP algorithm it is
usually augmented with a search algorithm like A* and some selection heuristics to reduce
the number of applicable actions prior to determining the utility of the actions.
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A-4 UAV Flight Control System Design

To fully understand the requirements of an automated mission manager, we must also inves-
tigate how a mission guidance agent fits into the overall flight control system of a UAV. This
section will look into three UAV flight control systems: Paparazzi; ArduPilot and; SmartUAV.
We will discuss how the decision making system is implemented in these platforms.

A-4-1 Paparazzi

Paparazzi is a free and open-source hardware and software project aimed at developing
autopilot systems for fixed-wing and multicopter aircraft (Brisset et al., 2006). All hardware
and software is open-source and freely available to anyone under the GNU licensing agreement.
Since its inception in 2003, development has been lead by the École Nationale de l’Aviation
Civile (ENAC) and the DUT. It has also attracted some commercial contributors such as
Transitioning Robotics (Paparazzi Community, 2013b).

Paparazzi provides a framework in which fully autonomous flight platforms can be developed
and contains functionality for: onboard flight control software; ground station visualisation
and control; mission planning and control. The framework used in Paparazzi can be seen in
Figure A-12.

Figure A-12: Overview of the paparazzi FCS (Paparazzi Community, 2013b)

Mission Planning and Control Flight plans are implemented in an XML file format using
a custom Document Type Definition (DTD). This flight plan is compiled at runtime and
implemented onboard the UAV as a FSM. This flight plan can be changed online during
flight using the Ground Control Station (GCS).

Future work is currently being carried out on advanced mission planning systems, where the
planning problem is formulated as a Constraints Satisfaction Problem (CSP) which will be
solved with the FaCiLe constraints library (Paparazzi Community, 2013a). This framework
requires plans to be recomputed online to take into account the uncertainties during the
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performance of the flight. To ensure that a mission is completed in finite time, a classical
reactive architecture has been implemented in Paparazzi to operate until the planner is
developed.

Ground Control Station

Paparazzi also includes a GCS to allow the user to visualise the current state and settings
of the aircraft in real-time and provides the user with a platform to communicate with the
UAV. The GCS typically communicates with the UAV using a bidirectional wireless modem
which supports both telemetry (downlink) and telecontrol (uplink).

Among others, the GCS software platform provides the following features:

• Compilation tools to produce the airborne software from the configurations and source
code

• GUI to control and interact with the UAV(s) during flight as well as mission planning
and simulation

• Basic simulator to ease the development of flight plans and verify some airborne code
behaviour

• Data logging system with plot-based viewer for real-time and post-flight analysis

• Utilities for communicating with the UAV and other agents

• Control panel GUI for configuration and program management

The GCS is made up of multiple modules which operate independently and simultaneously,
communicating to each other over a network. Each module contains code to interact with the
sensory inputs and action outputs of the vehicle or to perform some computation. The
required modules can be included when needed for a specific flight platform or mission
requirement. This modular framework makes it easy to add or remove modules or to integrate
custom modules. This also makes it easy to transition between simulated and real flight. The
modules to be run can be configured in the PaparazziCenter.

Simulation

Simulations can be run from the GCS but instead of connecting to the real UAV in flight
Paparazzi simulates the aircraft data and telecommunications link. Paparazzi currently has
3 different simulators with varying degrees of realism and intended purpose:

• SIM - The basic fixed-wing simulator

• JSBSim - More advanced fixed-wing simulator using JSBSim for the Flight Dynamic
Model

• NPS - An advanced rotorcraft simulator with sensor models also uses JSBSim
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JSBSim is an open source Flight Dynamics Model (FDM) which is essentially the mathemati-
cal model that defines the movement of a vehicle operating in a defined environment (Berndt,
2011). As JSBSim has no native graphical interface, it is typically used as a dynamics module
in a larger simulation environment, some notable examples are the open source simulator
FlightGear, motion-base research simulators at the University of Naples, Italy, and in the
Institute of Flight System Dynamics and Institute of Aeronautics and Astronautics at RWTH
Aachen University in Germany.

JSBSim contains features to include fully configurable flight control system, aerodynamics,
propulsion, landing gear arrangement, etc. through XML-based text file format. It can also
consider rotational earth effects on the equations of motion. It can also be augmented with
the GAIA module which adds some environmental parameters such as wind, infrared contrast,
Global Positioning System (GPS) quality, and time scale reference.

A-4-2 ArduPilot

ArduPilot, previously known as ArduPilot Mega (APM), is a open source, community main-
tained, autopilot system developed to be used to control and interact with many forms of
aerial and land based vehicles (ArduPilot Community, 2013b). ArduPilot contains a code base
which allows developers to interface with the vehicle hardware and automate the control of the
platform to achieve some task. Similar to Paparazzi, ArduPilot provides users with a mission
planning and control centre as well as a ground station to communicate with the UAV in flight.
Just like Paparazzi, ArduPilot does not have an embedded simulation platform but rather it
relies on an external program Flightgear to perform hardware-in-the-loop simulations.

ArduPilot provides two methods to implement mission planning, namely: MissionPlanner
and; APM Planner 2.0 (ArduPilot Community, 2013c,a). We will discuss these two systems
in brief below.

MissionPlanner

The MissionPlanner is a ground station and vehicle mission planing platform developed by
Michael Oborne to interface with ArduPilot based flight platforms (ArduPilot Community,
2013c). This software gives the user the ability to provide the flight platform with the following
features:

• Point-and-click waypoint entry using Google Maps

• Select mission commands from drop-down menus

• Download mission log files and analyse them

• Configure settings for the selected flight platform

• See the output from APMs serial terminal

Mission management is described in a mission file which allows the user to program flight
waypoints and commands such as: Loiter; Return-to-Launch; Land; Take-off, Change Speed;
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ect. The user can also apply some conditional logic such as Conditional delay; Condi-
tional distance; Conditional Change Alt and; Do Jump which allow the user to control when
the flight platform executes a command from the flight plan. This line-based formulation for
the mission planning is similar to many line-based programming languages such as Basic.

APM Planner 2.0

APM Planner 2.0 is an multi-platform open-source ground station application for UAV using
the Micro Air Vehicle Communication Protocol (MAVLink) which includes: PX4, PIXHAWK,
APM and Parrot AR.Drone (Meier, 2013). This recently updated platform builds on the
MissionPlanner platform and incorporates some features from another ground station called
QGroundControl (Bonney, 2013). This software allows the user to easily interface with some
recently developed flight platforms. The simulation and mission planning capabilities of the
APM Planer 2.0 are very similar to the MissionPlanner above.
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Preliminary Work

This chapter presents the preliminary work done to show that EL based learning can be
effectively used to automatically generate BTs that exhibit rational behaviour. First, a
description of how the BT structure is implemented will be stated in Section B-1. This
is followed by how the EL and its genetic operators have been implemented Section B-2. The
test problem will then be described in Section B-3 and some preliminary results will be shown
in Section B-4.

B-1 Behaviour Tree Implementation

The BT framework was developed in a C++ programming language similar to the standard
BT framework as described in (Champandard, 2012). A standard Behaviour class called
a Behaviour was defined from which all other node types inherit from, this maintains the
reusability and expandability that makes BTs so useful.

Basic nodes only contain information about themselves as well as some string identifiers to
individualise each node. The core behaviour of each node is contained within a wrapper
function which handles the initialisation, execution of the node behaviour and termination of
the node. When a node is called or ticked, it is first initialised then its behaviour is called,
upon completion of the behaviour it returns its state (Success, Failure, ect.) to its parent.

Actions and Conditions directly inherit from this class structure, where each action or
condition contains different behaviour. As Composite nodes have children, their structure
must be expanded to also contain information about their children. They contain a vector
of pointers to their children and an iterator pointing to the current child. Additionally there
are helper functions to set/get, add/delete or replace child nodes of a composite.

Only two composite nodes were implemented, namely the: Sequence and; Selector. These
functions were implemented as described earlier. The Action and Condition nodes are
dependent of the sensor input and action output of the specific platform and will be described
later.
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To retain the generic framework of the BT nodes, data cannot explicitly be passed to each
node but rather the nodes can access a centralised set of data managed by a Blackboard. A
Blackboard is used to store the required data and manages the reading and writing of data
from any requester. A custom Blackboard was developed for this project. A Blackboard must
be initiated and passed to the root node of the BT when it is ticked, explicitly passing the
Blackboard retains the flexibility of changing or reinitialising the Blackboard during runtime
or as it is passed down the tree.

B-2 Evolutionary Learning Implementation

The main elements which make up EL are: how the population of solutions is initialised; how
individuals are chosen for procreation; how individuals from one generation are combined to
make the next generation; how individuals are mutated. These points will be briefly described
below.

Initialisation The initial population of M individuals is generated using the grow method
as defined by Koza (1994). This results in variable length trees where every Composite node
is initialised with its maximum number of children and the tree is limited by some maximum
tree depth, this provides an initial population of very different tree shapes with good genetic
material to ensure good EL search.

Selection Tournament selection is used and is implemented by selecting a number of random
individuals from the population. The size of the group is defined by the tournament selection
size parameter s. This subgroup is then sorted in order of their fitness, if two individuals
have the same fitness they are then ranked based on tree size, where smaller is better. The
best individual is then selected and returned for procreation, thus the probability of selection
from subgroup is unity, p = 1.

Crossover As the tournament selection returns one individual, two tournaments are needed
to produce two parents needed to perform crossover. The percentage of the new population
formed by Crossover is defined by the Crossover Rate Pc. Crossover is implemented as the
exchange of one randomly selected node from two parents to produce two children. The node
is selected totally at random independent of its type or its location in the tree.

Mutation Mutation is implemented with two methods, namely: micro-mutation and;
Macro-mutation. Micro-mutation only affects leaf nodes and is implemented as a reini-
tialisation of the node with new operating parameters. Macro-mutation, also known as
Headless-Chicken Crossover, is implemented by replacing a selected node by a randomly
generated tree which is limited in depth by the maximum tree depth. The probability that
mutation is applied to a node in the BT is given by the mutation rate Pm, once a node has
been selected for mutation the probability that macro-mutation will be applied rather than
micro-mutation is given by the headless-chicken crossover rate Phcc.
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B-3 Khepera Test Problem

An initial test set-up was devised to test all the developed software and investigate the effect of
the operating parameters of the learning system. The chosen problem was the application to
the Khepera wheeled robot as shown in Figure B-1. This problem is often used in automated
mission management development problems (Koza & Rice, 1992; Floreano & Mondada, 1994;
Quinn et al., 2002; Nolfi, 2002; Trianni, 2008; Nelson et al., 2009). The vehicle consists of two
wheels 55mm apart with eight Infrared (IR) sensors distributed around the vehicle.

Figure B-1: Khepera vehicle

In a passive lighting situation the IR sensors output is a saturating linear function proportional
to the distance from the wall, the maximum range is 60mm and the output will saturate at
25mm. Although in reality the IR sensors have a cone shaped viewing angle of about 70◦ the
viewing angle was modelled as line to simplify the simulation. The wheel speeds can be set
independently to control the motion with top vehicle speed of 80cm/s.

The Action node implemented in the BT was SetWheelSpeed, when this node is called it will
set the wheel speeds of both wheels to some value determined at random when the node
was initialised. The LessThan operator was implemented as the only condition to keep the
eventual BT simple. Each LessThan node is initialise with a random sensor to check and a
random value to compare against, when called it will return if the current IR sensor value
is less then the threshold. A UML class diagram for the implementation of the BT can be
found below in Figure B-2. The EL is evaluated with a fitness function and this has a great
influence of the final vehicle behaviour. The fitness function was implemented as follows:

F = V · (1−
√
∆V ) · (1− i); V := [0, 1],∆V := [0, 1], i := [0, 1] (B-1)

where V is the normalised sum of the wheel speeds, ∆V is the difference of the wheel speeds
and i is the normalised distance of the IR sensor closest to any wall. The three components
of the fitness function will ensure that the Khepera will go quickly forward (V ) is as straight
a line as possible (∆V ) while avoiding walls (i).

Each generation had k simulation runs to evaluate the performance of each individual. Each
run is characterised by a randomly initiated location in the room and a random initial pointing
direction. Each run was terminated when the Khepera hit the wall or reached a maximum
simulation time of 100s.
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Figure B-2: UML class diagram of the Behaviour Tree framework for the wheeled robotic vehicle
Khepera

B-4 Test Results

This section will briefly present some sample results from the test problem described above.
The following parameters were used for the EL:

Table B-1: Table showing parameter values for the EL run

Parameter Value

Number of Generations (G) 50
Population size (M) 1000
Tournament selection size (s) 1%
Elitism rate (pe) 1%
Crossover rate (pc) 89%
Mutation rate (pm) 20%
Headless-Chicken Crossover rate (phcc 20%
Maximum tree depth (Dd) 6
Maximum children (Dc) 6
No. of simulation runs per generation (k) 3

Figure B-3 is a plot of the path navigated by the best individual in the last generation, this
shows the eventual behaviour learned by the system to navigate an irregular room. In this
particular run, the Khepera starts in the North-East corner and proceeds to navigate the
room making sharp right turns. It can be seen that the Khepera acts as would be expected
with the selected value function, it goes as straight and fast as possible while avoiding walls.
It was observed that the Khepera typically converges to always turn in one direction. This
is an interesting result which will ensure that the robot will never be caught in a corner by
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possible chattering between turn right and turn left behaviours, this would therefore increase
the reliability and generality of the converged behaviour.

Figure B-3: Path of the best individual in the last generation of the EL in an irregular room

The progression of the EL can be seen in Figure B-4. This plot shows that the best individuals
in the EL quickly converge and the fitness function has little variation for multiple simulation
runs. The average score of the entire population initially improves but quickly levels off
and has a large standard deviation. This indicates a diverse population which is good for
exploration in the EL. The mean of the general population is also significantly lower than
the best performers which indicates that the population has a significant number of poor
performers which can also indicate good exploration of the solution space of the EL.

Finally, Figure B-5 shows the size of the BTs in the EL as the generations progress. It can be
seen that the initial population has very large trees which ensures much genetic material to
begin the EL search. The trees reduce in size as the number of generations progresses but still
remain large by the end of the run, much larger than would be generally easily comprehensible
to a human. As the ability for the user to comprehend the final BT is beneficial to the final
usage of the behaviour in practice the reduction of the tree size should be explicitly considered
in the EL. A more direct method for selection in the EL based on tree size could be possibly
implemented with a multi-objective optimisation such as the Pareto approach (Sbalzarini et
al., 2000; Tan et al., 2001). The EL would then be used to optimise the population for both
the fitness function and the tree size.
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Figure B-4: Average fitness and standard deviation of the best individual and the entire popu-
lation

Figure B-5: Total number of nodes in the best individual and the average of the population
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Behaviour Tree Pruning

This chapter describes the method used to prune the genetically optimised BT in more detail.
As the GP optimisation used in this paper uses no information of the behaviour tree in its
genetic operators other than the geometrical limits of the tree, some genetic operations result
in nodes in the tree which have no purpose. Pruning is simply the process of removing nodes
from the behaviour tree that have no resultant effect on the exhibited behaviour.

Pruning is dependant on the tree structure but also on the possible outputs of each node in the
tree. In the current implementation, conditions have two possible status returns (SUCCESS
or FAILURE) whilst actions have only one (SUCCESS). Additionally, condition nodes are
implemented with only SUCCESS and FAILURE status returns. Due to this information,
some simple examples of localised node combinations that result in unnecessary nodes are
listed below:

• nodes after an Action node in a Selector will never be evaluated

• multiple Action nodes of the same type in series within a Sequence will overwrite each
other so only the final action will be effective

• a composite with only one child can be replaced by its child node

Below, Listing C.1 shows the original result of the genetic optimisation. The BT contains 32
behaviour nodes with maximum depth 6 and maximum number of children of 7.
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1 <BTtype >Composite <function >Selector <vars ><name >Selector <endl >

2 <BTtype >Composite <function >Sequence <vars ><name >Sequence <endl >

3 <BTtype >Action <function >turnRate <vars >0.2<name >DelFly <endl >

4 <BTtype >Composite <function >Selector <vars ><name >Selector <endl >

5 <BTtype >Condition <function >greater_than <vars >308,2<name >DelFly <endl >

6 <BTtype >Action <function >turnRate <vars >-0.7<name >DelFly <endl >

7 <BTtype >Condition <function >less_than <vars >-0.84,3<name >DelFly <endl >

8 <BTtype >Action <function >turnRate <vars >0<name >DelFly <endl >

9 <BTtype >Condition <function >less_than <vars >-0.32,3<name >DelFly <endl >

10 <BTtype >Composite <function >Sequence <vars ><name >Sequence <endl >

11 <BTtype >Composite <function >Selector <vars ><name >Selector <endl >

12 <BTtype >Condition <function >less_than <vars >0.28,0<name >DelFly <endl >

13 <BTtype >Composite <function >Selector <vars ><name >Selector <endl >

14 <BTtype >Condition <function >less_than <vars >0.9,0<name >DelFly <endl >

15 <BTtype >Action <function >turnRate <vars >-0.6<name >DelFly <endl >

16 <BTtype >Condition <function >greater_than <vars >112,2<name >DelFly <endl >

17 <BTtype >Action <function >turnRate <vars >0.9<name >DelFly <endl >

18 <BTtype >Action <function >turnRate <vars >0.4<name >DelFly <endl >

19 <BTtype >Action <function >turnRate <vars >0.3<name >DelFly <endl >

20 <BTtype >Action <function >turnRate <vars >-0.9<name >DelFly <endl >

21 <BTtype >Condition <function >less_than <vars >94,1<name >DelFly <endl >

22 <BTtype >Action <function >turnRate <vars >-0.5<name >DelFly <endl >

23 <BTtype >Action <function >turnRate <vars >-0.5<name >DelFly <endl >

24 <BTtype >Composite <function >Sequence <vars ><name >Sequence <endl >

25 <BTtype >Action <function >turnRate <vars >-0.5<name >DelFly <endl >

26 <BTtype >Composite <function >Sequence <vars ><name >Sequence <endl >

27 <BTtype >Action <function >turnRate <vars >0.2<name >DelFly <endl >

28 <BTtype >Condition <function >less_than <vars >132,2<name >DelFly <endl >

29 <BTtype >Composite <function >Sequence <vars ><name >Sequence <endl >

30 <BTtype >Action <function >turnRate <vars >1<name >DelFly <endl >

31 <BTtype >Condition <function >less_than <vars >69,1<name >DelFly <endl >

32 <BTtype >Action <function >turnRate <vars >-0.4<name >DelFly <endl >

Listing C.1: Original genetically optimised Behaviour Tree for fly-through-window task. Lines
highlighted in red can be pruned away

Applying the previously mentioned rules we can reduce the tree to 14 children as shown below
in Listing C.2. Applying very simple pruning rules have amounted to a reduction of about a
2/3 of the original tree size.

1 <BTtype >Composite <function >Selector <vars ><name >Selector <endl >

2 <BTtype >Composite <function >Sequence <vars ><name >Sequence <endl >

3 <BTtype >Action <function >turnRate <vars >0.2<name >DelFly <endl >

4 <BTtype >Composite <function >Selector <vars ><name >Selector <endl >

5 <BTtype >Condition <function >greater_than <vars >308,2<name >DelFly <endl >

6 <BTtype >Action <function >turnRate <vars >-0.7<name >DelFly <endl >

7 <BTtype >Action <function >turnRate <vars >-0.5<name >DelFly <endl >

8 <BTtype >Composite <function >Sequence <vars ><name >Sequence <endl >

9 <BTtype >Action <function >turnRate <vars >0.2<name >DelFly <endl >

10 <BTtype >Condition <function >less_than <vars >132,2<name >DelFly <endl >

11 <BTtype >Composite <function >Sequence <vars ><name >Sequence <endl >

12 <BTtype >Action <function >turnRate <vars >1<name >DelFly <endl >

13 <BTtype >Condition <function >less_than <vars >69,1<name >DelFly <endl >

14 <BTtype >Action <function >turnRate <vars >-0.4<name >DelFly <endl >

Listing C.2: Genetically optimised Behaviour Tree for fly-through-window task after application
of localised pruning. Lines highlighted in red can be pruned away

By applying more global information of the node combinations can lead to further reduction
in size. An example of this global optimisation can be seen in Listing C.2. If we evaluate
the BT to the Selector node on line 4, evaluating its children we see that the Condition node
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has two possible outcomes, let us first assume the outcome will be SUCCESS, the selector
will then return SUCCESS to its parent which in this case is a Sequence which continues to
evaluate the tree. In this case the Selector on line 4 has no effective impact on the output
of the tree. Now, evaluating the tree again and assuming the outcome of the Condition node
on line 5 is FAILURE, the Action node on line 6 will be evaluated and return SUCCESS to
the Selector which returns SUCCESS to its parent a Sequence which then evaluates its next
child which is an Action which overwrites the Action node on line 6. In this case again, the
Selector and its children have no effective impact on the output of the BT. This selector can
therefore be removed along with the Action node on line 3. A similar logic can be used to
remove the Sequence on line 8 and therefore the turnRate on line 7. These actions result in
our final pruned BT as shown in Listing C.3 which contains 8 nodes.

1 <BTtype >Composite <function >Selector <vars ><name >Selector <endl >

2 <BTtype >Composite <function >Sequence <vars ><name >Sequence <endl >

3 <BTtype >Action <function >turnRate <vars >0.2<name >DelFly <endl >

4 <BTtype >Condition <function >less_than <vars >132,2<name >DelFly <endl >

5 <BTtype >Composite <function >Sequence <vars ><name >Sequence <endl >

6 <BTtype >Action <function >turnRate <vars >1<name >DelFly <endl >

7 <BTtype >Condition <function >less_than <vars >69,1<name >DelFly <endl >

8 <BTtype >Action <function >turnRate <vars >-0.4<name >DelFly <endl >

Listing C.3: Pruned genetically optimised Behaviour Tree for fly-through-window task

If we were to continue our in-depth investigation, it becomes clear that we can reduce the
system to only 7 nodes if we compress the two Sequences together if we inverse the logic of
node 4 as shown in Listing C.4. This is a quite invasive alteration so was not used in the
thesis analysis but is possible due to the intelligence of the BT encoding framework.

1 <BTtype >Composite <function >Selector <vars ><name >Selector <endl >

2 <BTtype >Composite <function >Sequence <vars ><name >Sequence <endl >

3 <BTtype >Action <function >turnRate <vars >0.2<name >DelFly <endl >

4 <BTtype >Condition <function >greater_than <vars >131,2<name >DelFly <endl >

5 <BTtype >Action <function >turnRate <vars >1<name >DelFly <endl >

6 <BTtype >Condition <function >less_than <vars >69,1<name >DelFly <endl >

7 <BTtype >Action <function >turnRate <vars >-0.4<name >DelFly <endl >

Listing C.4: Pruned genetically optimised Behaviour Tree for fly-through-window task

The pruning applied to get from Listing C.1 to Listing C.2 only uses information about the
node and its immediate neighbours in the tree, this can be simply automated using rules.
The second pruning step we described here requires knowledge of how each node in the tree
interacts with other nodes and would therefore need to be implemented using a more advanced
method, perhaps with some form of recursive logical analysis.
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