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ABSTRACT

A challenging problem in the research field of
Micro Air Vehicles is to achieve vision-based au-
tonomous indoor flight. Approaches to this prob-
lem currently hardly make use of image appear-
ance features, because these features generally
are computationally expensive. In this article,
we demonstrate that the broadly applicable strat-
egy of random sampling can render the extrac-
tion of appearance features computationally effi-
cient enough for use in autonomous flight. Ran-
dom sampling is applied to a height control al-
gorithm that estimates the height at which an im-
age is taken by processing small image patches.
The patches are extracted at random locations
in the image. We vary the specific number of
image patches to directly influence the trade-off
between processing time and the accuracy of the
height estimation. The algorithm is first tested on
image sets and then on videos taken from a real
platform. Subsequently, the algorithm is tested
on a 15-gram ornithopter in an office room. The
experiments show that very few image patches
( 0.56% of all possible patches) are already suf-
ficient for the task of height control.

1 INTRODUCTION

Micro Aerial Vehicles (MAVs) hold a promise to observe
places that are either too small or too dangerous for humans
to enter. However, autonomous indoor flight remains a chal-
lenging and largely unresolved problem: even basic capabili-
ties such as obstacle avoidance are hard to attain. The lightest
of MAVs (see Fig. 1) cannot carry sensors such as a miniature
laser range finder to achieve indoor flight [1, 2]. Instead, they
can only carry a passive sensor such as a camera onboard.
At the moment, there are two main approaches for achieving
indoor flight on the basis of onboard camera images.

The first approach accurately estimates the state of the
MAV (3D position and attitude). Such a state estimate can be
obtained by ‘matching’ camera images to known locations in
a 3D-model of the environment [3, 4, 5, 6, 7]. However, the
algorithms for learning and using such a model are currently
still computationally expensive. They require heavier, more
energy consuming processors for onboard processing.
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Figure 1: The DelFly Micro is a 3.07-gram ornithopter with
a wing span of 10 cm. Autonomous flight will require fast
image processing with little computational power available.

The second approach is a bio-inspired approach to au-
tonomous flight that is computationally more efficient. Typ-
ically a state estimate is abandoned altogether and the MAV
directly responds to incoming visual inputs [8, 9]. Gener-
ally, optic flow is used [10, 11, 12], since it has been shown
to play an important role in insect flight [13, 14]. However,
both the optics and the optic flow algorithms of flying robots
are inferior to their natural counterparts. As a consequence,
autonomous flight with optic flow is limited to environments
with sufficient texture.

While optic flow is commonly used in efforts for reach-
ing autonomous flight, image appearance has been largely ne-
glected. Image appearance features could be useful for au-
tonomous indoor flight, since they can capture information
complementary to optic flow. For example, the absence of
texture (a fail-case for optic flow) can be successfully de-
tected by extracting appearance features. The little interest
in appearance features is mainly due to the fact that their ex-
traction is computationally expensive.

The first contribution of this article is to show that the
broadly applicable strategy of random sampling can render
the extraction of appearance features fast enough for use in
indoor flight. Instead of extracting samples at all possible im-
age locations, the strategy extracts samples at a random sub-
set of locations. The higher computational efficiency comes
at the cost of an acceptable loss in accuracy.

The second contribution of the article is that a novel
height estimation algorithm is introduced for use in indoor
flight. The algorithm captures the distribution of textures and
/ or colors in a still image, and classifies it as belonging to a
certain height.

The remainder of the article is organised as follows. In
Section 2, the height estimation algorithm is described. In
Section 3, the computational efficiency and accuracy of ran-
dom sampling is investigated in the context of the height es-
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timation algorithm. Subsequently, the selection of the algo-
rithm’s parameters is explained in Section 4 and the offline
tests we performed in Section 5. Then, we focus on the im-
plementation of the algorithm for controlling a 15-gram or-
nithopter in Section 6. We explain the experimental setup, the
controller, and evaluate the results of the algorithm in flight.
Subsequently, we discuss the generalization of the proposed
algorithm to unknown rooms in Section 7. Finally, we draw
our conclusion in Section 8.

2 HEIGHT ESTIMATION ALGORITHM

The height estimation algorithm processes the images
from a forward pointing camera. The algorithm uses appear-
ance differences between images taken at different heights,
assuming little variance in the pitch of the MAV. Simply put:
an image taken close to the ceiling is different from an image
taken close to the floor. The algorithm is based on the work of
[15]. They showed that the computationally efficient texton
method performed better than computationally intensive fil-
tering methods (such as Gabor filters) on a texture classifica-
tion task. We use the texton method, since it has a rather good
performance on image classification tasks and it is amenable
to a random sampling approach.

2.1 Description
The texton method starts with the gathering of an image

set that represents the type of space in which the MAV has
to fly. The images in the set need to be taken at H different
heights1. After constituting the image set, we commence the
learning of a dictionary of n textons (also referred to as visual
words). To this end, we extract small image samples of size
w × h pixels from each image in the set. The extraction lo-
cations are drawn from a uniform distribution over the entire
image. The extracted samples are clustered by means of a Ko-
honen network (cf. [16]). There are other - more advanced
- clustering techniques (see [17] for a MATLAB c©toolbox
with most recent methods), but the Kohonen network has the
advantage of learning the clusters in an iterative fashion. It
finds clusters quickly, and can be stopped as soon as the clus-
ters seem to cover the different samples sufficiently.

We can use the dictionary to represent an image as a his-
togram g of visual words. From the image, s image samples
are extracted. For each sample, we determine which visual
word i in the dictionary is closest (Euclidian distance), and
increment the corresponding bin in the histogram g(i). Nor-
malisation of the histogram results in a maximum likelihood
estimate p̂ of the probability p of each word in the image:
p̂(i) = g(i)/s.

The so-formed probability distributions are used as fea-
ture vectors in the learning and classification of different
heights. We divide the image set in subsets of images taken
at the same height h ∈ 1, 2, . . . , H . For all images in each

1In principle, height estimation could be approached as a regression prob-
lem. The choice for classification is due to practical advantages concerning
the formation of training data.

subset, the probability distributions are estimated. Then, the
average probability for each word ph(i) and the correspond-
ing standard deviation σ(ph(i)) are calculated.

The classification of an image starts with the extraction
of s image samples. This leads to the estimate p̂, which can
be compared with the learned ph. We made use of two very
basic classification methods to classify p̂: Naive Bayes (NB)
and a variation of Nearest Neighbour (NN). We vary on the
NN method, since it is normally slow at execution time. In-
stead of comparing a new point with all points in the training
set, we only compare it with the H ‘centroid’ points ph (the
average of all points p̂ observed for a height h during train-
ing). Algorithm 1 contains pseudocode for the classification.

Algorithm 1 Algorithm to classify an image as being of
height class h ∈ {1, 2, . . . , H}

empty the histogram g
for i = 1 to s do

pick a random location (x, y) in the image
extract an image sample centered on the location
for j = 1 to n do

determine the Euclidian distance of the sample to word j
end for
select the closest word, k
increment bin g(k)

end for
for i = 1 to n do

p̂(i) ← g(i)/s
end for
if NN then

for j = 1 to H do
determine the Euclidian distance of p̂ to pj

end for
h ← j, for the pj closest to p̂

else if NB then
for j = 1 to H do

determine the probability of p̂ being generated by pj , according
to independent Gaussian distributions for each visual word k, i.e.,
:N

(
pj(k), σ(pj(k))

)
end for
h ← j of the pj leading to the largest probability

end if

3 RANDOM SAMPLING

If the height estimation algorithm evaluates all possible
image patches for estimating p, it is too slow for application
to indoor flight. In order to reduce the computational effort of
the algorithm, random sampling can be employed: a limited
number of samples is then extracted at uniformly distributed
locations in the image. In this section, the effects of random
sampling on the computational effort and on the accuracy of
the estimate p̂ are evaluated.

3.1 Computational effort

Given a classification method, the computational effort
of algorithm 1 depends on the number of words n and the
number of extracted samples s. The computational effort c is
approximately:

c ≈ snW + n + HnC = n(sW + 1 + HC) (1)



, where W is the cost of calculating the Euclidian distance
between two single bins, and C is the cost of comparing two
single bins with the chosen classification method. During ex-
ecution, n is fixed, but s can be varied freely.

Fig. 2 shows the mean processing times and correspond-
ing standard deviations of a MATLAB implementation of
the texton method on a data set of 94 gray-scale images.
The MATLAB-implementation used to obtain these results
is available online2. The number of samples s is varied from
50 to 2500 with steps of 50. For the experiments, n = 30
and w = h = 5. The processing times are measured on a
2.26 GHz laptop.
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Figure 2: Mean processing times of a MATLAB-
implementation of TMG for a number of samples s from 50
to 2500. The error bars indicate the standard deviation.
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Figure 3: Mean execution frequencies and corresponding
standard deviations of a MATLAB-implementation of TMG
for a number of samples s from 50 to 2500 (blue solid line).
The 10 Hz limit is shown by a red dashed line.

Fig. 2 shows that, as expected, the processing times in-
crease linearly with the number of samples. Fig. 3 shows the
execution frequencies corresponding to the different numbers
of samples (blue line). It gives an idea of the numbers of sam-
ples that should be selected for the task at hand. For example,

2http://www.bene-guido.eu/guido/

it is reasonable to state that for height control with indoor
MAVs the execution frequency should at least be 10 Hz (red
dashed line). The figure shows that this frequency is reached
by extracting :225 or fewer samples. In addition, the execu-
tion frequency need not be higher than the frame rate, which
is typically 30 Hz. Of the tested numbers of samples, only 50
samples resulted in an execution frequency higher than 30 Hz
(43.7 Hz).

The full sampling processing time is not included in
Fig. 2, since it falls ouside of its scope. The image size used
for the experiments is 720× 480, leading to 345,600 possible
samples. The average processing time for full sampling in
such relatively large images amounts to 165.78 seconds with
a standard deviation of 1.68 seconds. This is ∼ 6376 times
the processing time of the texton method with 50 samples.
Of course, extracting a lower number of samples not only
decreases the computational effort but also decreases the ac-
curacy of the distribution estimates p̂.

3.2 Accuracy
Here the effect of random sampling on the accuracy of the

estimate p̂ is analyzed in the context of the maximum likeli-
hood estimate of the visual word distribution in the image.
This distribution is a categorical distribution, and can be fully
determined by extracting all samples from the image. Our
analysis consists of determining the relation of the number of
samples and the expected L1-distance between the maximum
likelihood estimate and the actual distribution in the image.

We determine the probabilities for distances between
the estimated and actual distributions for the case with re-
placement. Extracting a fixed number of s samples from
random image locations results in word occurrences g =
〈g1, g2, . . . , gn〉. The vector g follows a multinomial distribu-
tion and it has the following well-kown probability formula:

P (g) =
s!

g1!g2! . . . gn!
pg1
1 pg2

2 . . . pgn
n , (2)

with
∑

g1+g2+. . .+gn = s. For a given number of samples
s, this formula allows one to iterate over all possible vectors g
while determining the distance d between the estimated distri-
bution p̂ = g/s and the actual distribution p. The probability
for distance d = d(p̂, p) can then be incremented by P (g).
Iterating over all g permits to calculate P (d), the probability
distribution of the distances between the estimated and actual
distribution.

Although the above method is not elegant, it is tractable
for a limited number of samples, since there are also a lim-
ited number of possible distances. To illustrate the effects
of random sampling, we apply the method to the categorical
distribution with n = 6: p = 〈0.5, 0.1, 0.1, 0.05, 0.05, 0.2〉.
Fig. 4 shows the distribution P (d) (y-axis) for s =
{50, 100, 150, 200, 250, 300} (x-axis), where illuminance
represents high (white) to low (black) probabilities. The
black line indicates the mean distance to the actual distribu-
tion and the white dashed line the 95th percentile.
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Figure 4: Relation between the number of samples used in
random sampling and the accuracy of the estimate. The y-
axis shows the L1-distance between the estimated and the
true distribution, the x-axis shows the number of samples,
s = {50, 100, 150, 200, 250, 300}. The intensity represents
the probability, where white indicates high probability and
black a low probability. The black line indicates the mean
distance from the actual distribution, the white dashed line
the 95th percentile of the distribution.

Two main observations can be made from Fig. 4. First, as
to be expected, the mean of the distribution gets closer to the
actual distribution as the number of samples increases. Sec-
ond, this effect obeys the law of diminishing returns, so that
a modest number of samples already reduces the probability
for ‘large’ distances considerably.

When the distribution is known, P (d) can be determined
to provide certainty bounds to the distance between the es-
timated and actual distribution. For example, for the cate-
gorical distribution with replacement given above, P (d <
0.20 ∧ s = 150) = 0.95. The problem is of course that
the actual distribution is not available. Still, we can limit the
95% certainty bound from above by assuming the worst case
scenario, which occurs when the entropy of the actual dis-
tribution is highest3. Fig. 5 shows the mean distances and
the 95th percentiles for different distributions. The distribu-
tions have n = 6 bins and different entropies, mentioned in
the figure. The distances are highest for the distribution with
maximal entropy, H = 2.585.

4 PARAMETER SELECTION

The texton method involves a number of choices, includ-
ing the setting of parameter values that influence the trade-off
between computational efficiency and accuracy of the prob-
ability estimates. We made these choices on the basis of ex-
periments on a hand-made image set. We created the set by
walking up and down our office corridor holding the cam-
era at three different heights (H = 3): close to the ground
(:15 cm), at waist level (:100 cm), and close to the ceiling

3A formal proof of this matter is beyond the scope of this paper.
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Figure 5: Relation between the entropy H and the mean L1-
distances (solid lines) and the 95th percentile (dashed lines)
for different numbers of samples. The highest entropy leads
to the least accurate estimates.
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Figure 6: Mean error (expressed as the ratio of misclassified
images) when using a separation in the image (dark grey), and
no separation (light grey), for s ∈ {10, 50, 100, 200, 300} and
n ∈ {2, 5, 10, 20, 30}.

(:250 cm). In order to get reliable results, we used a separate
training set and test set (different walk with varying heights).
Because of the random nature of the selection of the samples,
we performed ten different training and test runs per param-
eter setting / choice. Since n and s are the most important
parameters, we always tried out different values for these pa-
rameters.

One important choice is to divide the image into a bot-
tom part and a top part. If an image is represented as a single
probability distribution of visual words, all spatial informa-
tion is lost. Coarse spatial information can be preserved by
dividing the image in a bottom and a top part. The histogram
and probability distribution then have double the size4. Figure
6 shows the difference in average error on the test set for the
plain method (mean error shown in light grey) and the method
with a bottom and top part (mean error shown in dark grey),

4The computational cost becomes: c ≈ sn2W + 2n + 2HnC
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Figure 7: Mean error (expressed as the ratio of misclas-
sified images) when using colour images (dark grey) and
when using black-and-white images (light grey) for s ∈
{50, 100, 200, 300} and n ∈ {5, 10, 20, 30}.

for n ∈ {2, 5, 10, 20, 30} and s ∈ {10, 50, 100, 200, 300}.
Dividing the image leads to a better average performance, at
the cost of n + HnC extra computational effort. Another
interesting comparison is that between the use of colour im-
ages (dark grey mean) and black-and-white images (light grey
mean), shown in Figure 7. Surprisingly, black-and-white im-
ages seem to lead to a slightly lower error than colour images
for most configurations. This is most likely due to overfitting
of the colour method.

Similar experiments led us to set the sample size to 5 ×
5, the image size to 160 × 120, and to choose the nearest
neighbour algorithm. Concerning the last choice, the naive
Bayes classifier can lead to a better performance, but has a
larger standard deviation in the results. The choice for the
nearest neighbour algorithm is a choice for reliability.

Importantly, all of the experiments showed roughly the
same relation between the number of samples and the error:
increasing the number of samples only has a modest influence
on the error above 100 samples. In addition, they all demon-
strated that for the height estimation it is unnecessary to have
more than 10 words. The final result of the experiments is
an error of around 0.22 = 22%. In the next subsection, we
investigate whether this error is low enough to estimate the
height of a flying MAV.

5 OFF-LINE EXPERIMENTS

Further experiments were performed to determine how
well the classification of the algorithm correlated with the
height of a flying MAV. The differences with a hand-made
video include more realistic image shake, WLAN-noise, and
realistic light differences. In this experiment, we used a
coaxial toy helicopter (a modified version of the Lama V4)
equipped with a small onboard colour camera and transmit-
ter.

We illustrate the experimental setup in Figure 8. The pilot

Images

Commands

Figure 8: Setup of the experiment (see the text for details).

used the joystick to control the helicopter. The computer sent
the joystick commands to an RC transmitter, which ported
them through to the helicopter. The pilot flew the helicopter
so that it attended different heights. During the flight, the
helicopter sent its images to a laptop computer running our
ground station software - SmartUAV. The software ran the
texton method, with the settings as determined in the last sub-
section. The only difference was in the number of height lev-
els, H = 5. An external camera filmed the helicopter. In this
manner, we were able to get an impression of the height of
the helicopter and compare it with the outcome of the texton
method.

After the experiment, the videoframes of the external
camera and the laptop computer were aligned. Then, straight-
forward motion detection was used to detect the helicopter
in the external camera images, and its median y-location in
the image was registered over time. Figure 9 shows the
y-coordinate over time (red line), the height classification
(green dotted line), and a smoothed version of the height clas-
sification (blue line). The figure shows that the uncertain and
discrete classifications can be smoothed to give a ‘continu-
ous’ signal, which correlates well with the y-coordinate of an
external camera.

6 FLIGHT EXPERIMENT

After the success of the algorithm on the images of a fly-
ing platform, we tested the algorithm inside the control loop
of a 15-gram ornithopter. In what follows, we explain the
experimental setup (Subsection 6.1), the controller (Subsec-
tion 6.2), and we show the results of our flight test (Subsec-
tion 6.3)

6.1 Experimental setup

The experimental setup is the same as in Figure 8, but
now we use the ornithopter as the flying platform. We per-
form the experiments in an office room, which underwent no
other preparation than switching on the lights and pushing the
furniture aside. For the online (in-the-loop) test, we film the
ornithopter from two view points (see the map in Figure 11).
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Figure 9: Comparison of the helicopter’s y-coordinate in the
external camera (solid line, scaled to [−1, 1] with 1 being the
top of the image), and the height estimated by the algorithm
(grey line, scaled to [−1, 1] with h = 3 mapped to 0). The
black dashed line is a smoothed version of the grey line.

Figure 10: The 15-gram ornithopter used for the height con-
trol experiments.

In this way, we can reconstruct the 3D trajectory of the or-
nithopter during the test. The experiment starts by the pilot
controlling the ornithopter via a joystick. He takes off, gives a
trim to the throttle of the ornithopter, and then pushes the fire-
button. When the firebutton is pressed, the computer is in full
control of the throttle. During the height control experiment,
the pilot continues to control the rudder of the ornithopter to
avoid the walls. The elevator is constant throughout the ex-
periment.

Figure 10 shows the ornithopter we have used for our ex-
periments. It is a 15-gram ornithopter with two black-and-
white cameras and transmitter on-board: only the forward
pointing camera is used. Its X-tail allows it to perform ver-
tical take-offs and landings. Powered by a LiPo battery, it
can in principle perform a hovering flight for 15 minutes. We
have to remark that the particular ornithopter used in the ex-
periments of this article is part of a series produced in 2007.

5.40m

3.90m

Camera,

height: 0.78m

Webcam on laptop, height: 1.04m

Figure 11: Map of the room used in the flight experiment.
The pilot only controls the rudder of the ornithopter; the
height is controlled autonomously. The ornithopter is filmed
from two viewpoints: by the webcam of the laptop and the
camera used in the previous experiment.
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Intel(R) Dual Core P8400 @ 2.26GHz 2.27GHz

Figure 12: Frequency (in Hz) of the thread running the height
estimation algorithm.

It was originally designed for 10 flying hours, but has already
seen more than 200 flying hours; it is still able to hover, but
only achieves a few minutes of hovering flight.

6.2 Controller
The controller used for the experiments is rather straight-

forward. The ground station receives an image, and uses
Algorithm 1 to classify it as one of the heights h ∈
{1, 2, 3, 4, 5}. The height is scaled to the interval [−1, 1],
with height 3 mapped to 0. This height value is used as an
error value in a regulator for the throttle. The throttle has a
value in the interval [−1, 1], with−1 being full throttle. Con-
cerning the regulator: for the experiment with the ornithopter
a P -controller was already sufficient to achieve height con-
trol, P = 0.45.

By running the controller and moving the ornithopter up
and down (while being turned off), we could explore the
trade-off between the number of samples s and the perfor-
mance / computational effort. We noticed that the algo-
rithm already performs sufficiently with only s = 100 sam-
ples, corresponding to the height algorithm running at :10.5
Hz. To compare, with s = 300, the algorithm runs at
:3.8 Hz. Figure 12 shows the frequency of the algorithm
on an Intel(R) Dual Core with 2.27 GHz for n = 10 and



Figure 13: Picture of the height control experiment.
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Figure 14: Solid blue line: height of the ornithopter over time.
Dashed red line: approximative height of h = 3, towards
which the height is regulated.

s = 10, 50, 100, 200, and 300. Note that this frequency was
determined while also running the controller and video re-
ceiving / viewing / recording software. This is also the reason
that the frequencies differ from those shown in Figure 3.

6.3 Results
The ornithopter successfully maintained a sane height

during the experiment; it neither touched the floor nor got
close to the ceiling (for a still of a video of the experiment, see
Figure 13). To get more insight into the height during flight,
we reconstructed the trajectory of the ornithopter as follows.
First, we determined the median x- and y-coordinates of the
motion detected in both (external) camera images5. Then, we
used the knowledge of the experimental setup in determining
the X ,Y -coordinate at which the rays backprojected from the
cameras intersect in the office room. Finally, we calculated
the corresponding height Z.

Figure 14 shows the reconstructed height (Z) over
time. The ornithopter stayed within an acceptable bandwidth
around the height classified as h = 3 (:90 cm). Please note
that the motion detection from the different view points leads
to rather noisy estimates. As a consequence, the actual Z-
coordinate may deviate from the shown (smoothed) trajectory

5We omitted video frames in which the ornithopter was only visible to
one of the cameras.

in the order of :20 cm. The height approximately varies be-
tween 0.55m and 1.45m. The reader may have a look at the
original experimental videos online at http://www.delfly.nl/.

6.4 Analysis

The experiments showed that 100 samples sufficed for
achieving height control. This represents only :0.56% of
the total number of possible image samples. In this subsec-
tion, we perform a preliminary analysis of how many of the
errors are actually caused by taking fewer samples. For this
analysis, we need to differentiate between two types of clas-
sification errors: (1) if the actual distribution is misclassified,
it is referred to as a generalization error, and (2) if the actual
distribution would be classified correctly, random sampling
can still lead to an estimated distribution that is classified dif-
ferently - a sampling error. In the experiments, both types of
errors were intermingled.

Here, we investigate the second type of error. Figure 15
contains the quantification of the sampling errors. For ten
randomly selected images from the experiments, we isolated
the sampling errors from the generalization errors as follows.
First, each image was fully sampled and the resulting (actual)
distribution classified as height h - which may differ from the
actual height level at which the image was taken. Then, the
image was classified multiple times with different numbers
of samples. A classification was counted as a sampling er-
ror if it was not equal to h. The ten red thin lines show the
relation between the sampling error and the number of sam-
ples for the ten images. The thick black line shows the same
relation, but then for the case in which the texton distribu-
tion exactly corresponds to one of the learned distributions.
Please note that random classification would result in an er-
ror of 0.8 (due to the 5 height levels). In addition, note that
all misclassifications are confounded, while for height con-
trol a misclassification of h = 1 as h = 2 is less of a problem
than a misclassification of h = 1 as h = 5. The main ob-
servation from Figure 15 is that a relatively low number of
samples already considerably reduces the sampling error. Af-
ter that, there are diminishing returns: increasing the number
of samples from 50 to 100 has a larger performance impact
than increasing from 100 to 150.

7 DISCUSSION

The main goal of this article is to demonstrate how ran-
dom sampling can render the extraction of appearance fea-
tures fast enough for use in indoor flight. For platforms such
as the DelFly II, such (fast) extraction of appearance features
may turn out to be vital to autonomous flight. The reason
for this is that more well-known methods such as optic flow
encounter problems with the images that are significantly dis-
torted and deteriorated by the high-frequency dynamics of the
flapping movements. In this section, we discuss to what ex-
tent the presented height estimation algorithm generalizes to
unknown rooms.
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Figure 15: Misclassification due to random sampling, H = 5.
Thick black line: average error when sampling from the
learned distributions. Thin red lines: average errors for ten
images from the height control experiment. See Subsec-
tion 6.4 for an explanation.

Specifically, we present the results of the texton method
for height classification on a larger image set than the one dis-
cussed in Section 4. The set was created by walking around in
different rooms and spaces while holding the camera at three
different heights (H = 3): close to the ground (:15 cm), at
waist level (:100 cm), and close to the ceiling (:250 cm).
Fig. 16 shows nine example images, one for each different
room. The figure illustrates that the set is quite challenging,
since it is small and diverse. We performed k-fold tests, with
k = 9 the number of rooms. As a consequence, the method
was always trained on the images from eight rooms and then
tested on the images from the ninth.

Figure 16: Example images from all nine rooms.

For this generalization task, the settings are slightly
changed to n = 30, s = 300. All images are still trans-
formed to gray-scale and divided in a bottom and a top part.
Fig.17 shows the results of the experiments as nine confusion
matrices. The row indices indicate the real classes (1 = low,
2 = medium, 3 = high), the column indices the classifications
by the height estimation algorithm. Blue represents a low
number of classifications for that class, red a high number of
classifications. Perfect performance would be represented by
a diagonal matrix with dark red on the diagonal and dark blue
cells off the diagonal.

k = 1

1 2 3

1

2

3

k = 2

1 2 3

1

2

3

k = 3

1 2 3

1

2

3

k = 4

1 2 3

1

2

3

k = 5

1 2 3

1

2

3

k = 6

1 2 3

1

2

3

k = 7

1 2 3

1

2

3

k = 8

1 2 3

1

2

3

k = 9

1 2 3

1

2

3

Figure 17: Confusion matrices for the texton method with
n = 30 and s = 300 for nine different rooms.

In five out of nine test rooms, the texton method evaluates
the true height levels as the most likely ones: rooms 1, 2, 6,
8, and 9. There are four rooms in which the method consis-
tently misclassifies at least one level: rooms 3, 4, 5, and 7.
One can see in Figure 16 that rooms 3, 4 and 5 have been
filmed in very dim light. This obviously degrades the per-
formance. The misclassifications in room 4 signify a shift up:
the method classifies all levels as slightly higher than they are.
In room 5, both the bottom and top level are well classified;
only the medium level is interpreted as slightly higher. Such
shifts in the height levels still have a chance of acceptable be-
haviour, since it may mean that the MAV just flies slightly
higher in the room. In contrast, room 7 has many unaccept-
able misclassifications of the height, since the bottom level is
interpreted as the highest level. In a control setting this would
surely lead to a crash. The explanation for this unacceptable
misclassification can be seen in Figure 16: uncommonly, this
room has a white floor. With no white floor in the training
set (rooms 1-6 and 8-9), the method misclassifies the corre-
sponding images.

The results on the generalization experiment suggest that
the proposed height estimation algorithm is especially suited
for flight in rooms that have roughly the same appearance as
the rooms in the training set. The features used in this article
are robust to light intensity changes between different rooms
or different days, but are sensitive to large intensity changes
such as those between rooms with daylight and rooms with
only artificial light.

8 CONCLUSION AND FUTURE WORK

We conclude that appearance features can be extracted
and processed fast enough for use in vision-based au-
tonomous flight. The light-weight MAV DelFly II success-
fully used the height estimation algorithm to keep a sane
height in an office room. To obtain successful height con-
trol, we did not prepare the room other than switching on the
lights and putting the tables and chairs aside. The algorithm



can be applied to almost any room, requiring only very lim-
ited training time (< :30 minutes). The trained algorithm
can generalize to rooms that have a similar appearance as the
ones in the training set. However, rooms with a very differ-
ent appearance (such as a white floor) lead to unacceptable
misclassifications. Therefore, we conclude that the height es-
timation algorithm is most suited for known environments.

In future work, we will focus on the use of appearance
features for obstacle avoidance. The most straightforward
method to achieve obstacle avoidance is to provide a train-
ing set with example images close to or far from obsta-
cles. A preliminary experiment leading to one minute of
full autonomy of the mentioned ornithopter can be seen at:
http://www.bene-guido.eu/guido/. In the preliminary experi-
ment, a simple decision tree (cf. [18]) was used to classify
images as close to or far from obstacles.

However, we will mainly focus on a more generalizable
measure for obstacle avoidance. It turns out that the appear-
ance variation of an image (as can be captured by the entropy
of the texton distribution) is a good measure of obstacle inci-
dence [19].
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