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Onboard Stereo Vision System
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Abstract— Autonomous flight of Flapping Wing Micro Air  stabilization of a tailless FWMAV was first achieved by
Vehicles (FWMAVs) is a major challenge in the field of robotics, the Nano hummingbird [18] with onboard sensing and pro-
due to their light weight and the flapping-induced body motions. cessing. Recently, attitude and 3D-position control has al
In this article, we present the first FWMAV with onboard . ! e
vision processing for autonomous flight in generic environments. bee,n aCh'eV_ed with the RObeee by u_t'l'zmg an external
In particular, we introduce the DelFly ‘Explorer’, a 20-gram  Mmotion tracking system [19]. Visual servoing tasks havenbee
FWMAV equipped with a 0.98-gram autopilot and a 4.0-gram  performed in various studies with either offboard sensimg) a
onboard stereo vision system. We explain the design choices computing [6], [5], [3], [16], onboard sensing and offboard
that permit carrying the extended payload, while retaining computation [6], [7], [8], [24], or with onboard sensing

the DelFly’s hover capabilities. In addition, we introduce a . .
novel stereo vision algorithm, LongSeq, designed specifically and computation [2]. In [2] the camera and chip from a

to cope with the flapping motion and the desire to attain a  Wii-mote’ were used for detecting and flying toward an
computational effort tuned to the frame rate. The onboard infrared light. Height control with external cameras hasrbe
stereo vision system is illustrated in the context of an obstacle achieved by multiple platforms [6], [5], [3], [16]. Vision-
avoidance task in an environment with sparse obstacles. based height control in known environments with an onboard

I. INTRODUCTION camera and offboard processing has been achieved in [6],
Autonomous flight of Micro Air Vehicles (MAVs) is a L7], while height control based on an onboard barometer and

major challenge in the field of robotics. The light weight andProcessing has been achieved in [9]. Obstacle avoidance has

small size of MAVs limits the sensors and processing thdteen addressed in [8], [9], [24]. In [8], [9] obstacle avaida
can be placed onboard, while flying in environments witt{vas performed with a single onboard camera, while a laptop

obstacles requires quick reactions. Impressive resultsign determined ?ptic flow and a complementary ‘appearance
area have been obtained with quad rotor MAVs (weighing iN&ration cue’. The success of monocular obstacle avoglanc
the order of 750 g), using sensors ranging from miniaturizekgmained limited, with a typical flight duration in normal

laser scanners [1], [14] to RGB-D devices [17], [11] and?ffice rooms of around 30 seconds. Recently, stereo vision
stereo vision [20] '[21]_ ’ has been studied for obstacle avoidance with FWMAVs [24],

Flapping Wing Micro Air Vehicles (FWMAVs) form a [23], reac_hing autonomous ﬂights in normal indoor spaces of
specific group of MAVs with the advantages of high ma©°Ver 6 minutes. The processing was performed offboard.
neuvrability, quick transition between multiple flight ietes S )
and robustness to impact. Existing FWMAV designs typically FOr autonomous flight in unknown environments, onboard
have a weight in the order of grams. For example, the erocessing and exteroceptive sensing are essential. Mareo
tremely small ‘Robobee’ weighs 0.7 grams (without onboarH‘e exterocep'uve sensing needs to prowde sufficiently ric
energy source) [19], and the ‘Nano hummingbird’ weighs 1g1f0rmat|on to allow for obstacle gvmdance 'and, Igter,—nav
grams [18]. Although most research on FWMAVs focuses ofgation. None of the above-mentioned studies fulfills these
their aerodynamics and design (cf. [22]), several studiegh fequirements.

addressed various forms of autonomous flight, with varying ) ] _
sensor / processing configurations. In this article, we present the first FWMAV that per-

In the brief overview of related work below, we discernforms onboard vision processing for autonomous flight in
four levels of autonomous flight as studied for FWMAys:Unknown environments. The DelFly ‘Explorer’ is a 28 cm
attitude stabilization, visual servoing, height contrahd Wing span, 20 gram FWMAV equipped with @98 gram
obstacle avoidance. Since obstacle avoidance has not #&fopilot and al.0 gram onboard stereo vision system. The
been solved, higher level navigation has not yet been studign@in contributions of this paper are: (1) the light-weight

Attitude stabilization is only relevant for tailless Fw- €lectronics for autopilot and stereo vision system, (2) the

MAVs, since they are passively unstable. Active attitudélesign improvements leading to more lift and better hagdlin
qualities for making turns with tailed FWMAVs (Section ),
*All authors are with the Micro Air Vehicle laboratory of theaé- _ti _affici iai
ulty of Aerospace, Delft University, 2629 HS Delft, The Nettands and (3) a novel real-time and mem_ory efficient stereo VISI?”
c. dewagt er @udel ft. nl, mi cr ouav@nai | . com algorithm, named LongSeq, which is robust to the FWMAV’s
1(©2014 IEEE. Personal use of this material is permitted. Peramissi flapping motion (Section 1ll). The onboard stereo vision
from IEEE must be obtained for all other users, including irdpmg/ — system s illustrated in the context of an obstacle avoidanc
republishing this material for advertising or promotionafgmses, creating . . . .
new collective works for resale or redistribution to sesver lists, or reuse task in an environment with sparse obstacles (Section V).
of any copyrighted components of this work in other works. We draw conclusions in Section V.



Fig. 1. Left: Picture of theDelFly Explorer The four insets show the main changes with respect to thelyD#IH1) the number of windings in the

brushless motors has been reduced to cope with the Expldrigter weight, (2) an autopilot with a complete IMU, barometerd an ATmega328P -
MLF28 microcrontroller, (3) the DelFly explorer uses ailesabehind the wings instead of a rudder on the tail, and (4pttioard stereo vision system
with STM32F405 processor for onboard vision processiight: Sketch of DelFly Explorer in flight with the body-axes defioit.

Il. THE DELFLY ‘EXPLORER’ showing its four main innovative components. The first inset
In the course of the DelFly project, many DelFly versionshows the brushless motor. The number of windings around
have been created. The project started in 2005 with tfiBe colis has been reduced from 37 to 32. This way the ratio
DelFly I, which weighed21.00 grams and had a 50 cm of rpm (and hence lift) versus input voltage is increased at
wing span. TheDelFly I, was demonstrated in 2007. It the cost of a lower torque. As a result the lift generated at
had a 28 cm wing span, and weigh&d.07 grams. The 3.5V is still sufficient to keep the heavier DelFly Explorer
smallest DelFly version, th®elFly Micro, was presented in the air. This is in contrast to the old case where it would
in 2008. It weighed3.07 grams and had a 10 cm wing descend when the voltage dropped below 3.9V. The flight
span. It is important to note that the unique property ofime of the DelFly Explorer is typically around 10 minutes.
the DelFly versions is not their size or weight, but that The second inset shows a side-view of the autopilot,
they can perform free-flight with onboard energy source ani@icluding an ATmega328P - MLF28 microcontroller, 3-axis
camera. The camera allows research on the use of FWMA®§Celerometers, gyros, magnetometers, and a barometer. Fu
as observation platforms or as autonomous robots. thermore, it features two-way telemetry and rpm-monitgrin
Despite the weight of an onboard camera and transmittekhe autopilot is not necessary to achieve stable flight, as
the DelFly Il has a large flight envelope: it can fly forwardthe tail of the DelFly passively stabilizes it during flight.
at 7 m/s, hover, and even fly backward-at m/s. Although However, the autopilot can serve other purposes, such as
the DelFly Il was presented to the public in 2007, its desigRerforming height control, disturbance rejection or more
and aerodynamics have been the subject of extensive stuijecise attitude control.
leading to considerable improvements in the handling prop- The third inset shows a set of ailerons placed just behind
erties, possible lift, and flight duration. As a consequencée wings. These ailerons are necessary for making smooth
of these properties and the miniaturization of electrgnicgurns, which is essential to autonomous flight. The DelFly II
more sensors have been added to it over time. While fgatured a rudder for making turns. Deflection of the rudder
first the onboard images were processed offboard both féifst caused the DelFly Il to yaw (around the Z-axis - see
height control and obstacle avoidance [7], [8], in a moré&he right part of Figure 1 for the axes definition), which in
recent study height control was performed by on onboardirn also resulted in a heading change. However, the yaw
microcontroller and barometer [9]. However, visual obftac rotations during turns rendered computer vision processin
detection was still performed offboard. during turns problematic. The ailerons of the DelFly Explor
The newest DelFly can carry sufficient payload to carrynake the DelFly roll (around the X-axis), and since it flies
a 0.98-gram autopilot and &.0 gram stereo vision system close to up-right, this directly influences the heading with
(cameras and processor), the details of which are giverieating any rotations of the camera images.
below. Although the payload makes the DelFly heavier, it Finally, the fourth inset shows the stereo vision system in
also allows the autonomous exploration of unknown spacemore detail. It has two digital cameras with a baseline of
Since this sets this DelFly apart from all previous versjon$.0 centimeter and an STM32F405 processor. Importantly,
we give it a new name: thBelFly Explorer. It has a wing the flapping motion of FWMAVs introduces deformations
span of 28 cm and a weight of 20 grams. in the camera images [4], [8]. Therefore, it is not possible
The DelFly Explorer is shown in Figure 1, with insetsto use subsequently recorded left and right images for



stereo matching [24]. The cameras of the stereo system guiels and disparities of the image line using two threstiold
synchronized and providéUY V image streams, and in the 7., and 7,,,;,:

current implementation a CPLD merges the streams from

both cameras by alternately taking thiecomponent of the .
stream from both cameras. This results in a single imageB(z,d) = {1 i C(I’_d) > Teost AN Crnin (%) < Timim
stream with the ordet;Y,Y,Y,. The resulting stream con- 0 otherwise

tains simultaneously sampled pixels at full camera regwniut . o : (3)
but without color. The cost threshold,,,; is used to define if a pixel match

is good or bad. A matching cost above the threshold indicates
1. STEREO VISION ALGORITHM a bad match. The minimum cost threshelg;,, is used to

For the stereo vision system carried onboard the DelFly, @eck if there is at least one disparity value for which the
new stereo vision algorithm was developed that is present®ék€l has a good matchB(z, d) will only be nonzero when
in this section. For autonomous obstacle avoidance of tigxel z has a some good matching candidate, but if that is
DelFly, it is required to have real-time processing of théot the case for the disparity value considered. Pixels that
stereo images in combination with sufficient depth qualithave no good matching candidates are simply ignored. As a
Since the stereo system is heavily restricted in terms é@sult,imageb indicates which pixels have better candidates
processing speed (168 MHz) and memory availability (mas@t other disparities. All other pixels are ignored at thesgst
192 kB RAM), it is important to find the right point on the since they have either no good matching candidate, or they
trade-off between speed and quality. match well at the considered disparity value.

Among the huge amount of stereo vision algorithms The next step is to find sequences of neighboring pixels
that can be found in literature there are two groups thaf an image line that do not have better matching candidates
are not regarded to be suitable for our application. Theg¥ other disparities (i.eB(z,d) = 0). The length of this
are the algorithms that perform global optimization, angequence will be used as a measure for matching quality and
the algorithms that are based on local matching. The fir8tis therefore stored in imag®. This is done by replacing
group is too demanding in terms of power and memor?.” zero values by the length of the sequences they belong to.
requirements, while the second group provides insufficiefitor example, let us consider eight neighboring pixels (50 to
quality when dealing with image regions that contain littl€d7) in a line for one disparity value, e.g., 7. From Equation
texture. In between these groups there is another group 3fthe following fictitious values were obtained:
algorithms that perform semi-global optimization. Exae®pl
of these algorithms are 1-D Dynamic Programming [12] and B([5057],7) =[10001001]
Sl s 1) Thss gmims o K1 1 ot e o o s o e or
of such an algorithm is that an error someWhere along th};\s/rléh;sggrtgig ?ncrieolr;ecgéltg I?Eg;f'nz?fbézos inB then
optimization line has an effect on the rest of the optimati gy rep y |
line. These effects are limited in [15] by optimizing over
multiple directions. However, this increases the required
amount of processing and memory again. An initial disparity mapD.%/; is then computed by se-

nit

lecting from B for all x the disparity value with the highest

B([5057],7) =[13331221]

A. LongSeq )
) . number (longest sequence):
For these reasons a new algorithm is proposed that per-
forms optimization along one image line at a time, where Dﬁfﬂ(m) = max B(z, d) 4)

badly matched pixels do not have a degrading effect on
the matching quality. For reasons to become clear in the The matching cost as described in Equation 1 is defined
explanation, we call it théongSecplgorithm. The first step for matching the left image with the right image. The process
in the algorithm is to compute the matching coétér,d) s repeated for matching the right image with the left image
of the pixels in one image line by calculating the absoluteo obtain D!*/! and D7'9"*. These disparity maps can now

init init

difference in intensity for a disparity rangg..,4. starting be combined to optimize the result. This is done by mapping

from a minimal disparityd,,,;, . the left disparity image to the right disparity image:
C(x,d) = [i(z) — I(x — d) (1) Dt = (@ — Dl (@) « —Digii(x)  (5)
~ Then the minimum matching coét.;, (x) for each pixel  The optimal disparity is then found by taking the minimum
is computed: of the two disparity maps:
Cinin () = min C(z, d) ) Dope(z) = min(DLedt=>right (), DTI9M) (6)

Based on these cost measures (matching cost and mini-This optimization step is required to handle disparity
mum matching cost), a binary imade is computed for all discontinuities. The algorithm is nhamed LongSeq, because



it favors long sequences with constant disparity in an image
line. In situations where there is little to no texture, this
will slightly bias the result to high-disparity estimatds.

the context of obstacle avoidance, this is very sensible: lo
texture images often occur close to obstacles and in any case
present a danger, since they do not provide information on >
distances to obstacles ahead.

This method assumes that the images contain only fronto-
parallel planes. Furthermore it specifically tries to match
image planes with low variation in texture. By sliding these 3
planes over each other, there will be one disparity where the
overlap between the planes from the left and right image will
reach its maximum. This effect is measured by the length of
the sequences, and for this reason the maximum length is 4
selected as the best match.

The proposed method shows some similarities with plane
sweeping algorithms [13] in that it tries to match an image
plane for a certain orientation. However, in the proposed °
method only fronto-parallel planes are considered for com-
putational reasons. Moreover, in contrast to [13], LongSeq
searches the largest line section meeting this assumption.

B. Subsampling

In the interest of computational efficiency, typical stereo
vision steps such as undistortion and image rectificatien ar
skipped. Without these steps, LongSeq takes ardinchs
of processing on the STM32F405 on a full imagel 28 x 96
pixels. Hence, it runs at 11 Hz. For many applications of
the stereo vision systerml Hz can be sufficient. However,
for some applications, such as obstacle avoidance or flying
through a window, a higher processing frequency may be
desired. The same goes if one wants to perform additional
vision tasks besides stereo vision. 9

If the interest is not in dense 3D scene reconstruction, but
some type of aggregate disparity values are used (as in [24],
[23]), thensub-samplingzan be applied. Sub-sampling typi-
cally leads to a considerable gain in computational effigyen gom left to right: the left image, the right image, and the disty image

at a low cost in accuracy [10] Since LongSeq is “ne'base soduced by the proposed stereo vision algorithm LongSee. disparity
a natural way of sub-sampling is to process fewer lines. Thmages are color coded from low-disparity (dark) to highpdisty (bright).

use of sub-sampling with the stereo vision algorithm will be
tested in an application of sparse obstacle avoidance.

Il

IR e
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Fig. 2. Nine examples of the stereo vision processing. Thentos show

its heading. The obstacles are tall, brightly colored poles
IV. APPLICATION TO SPARSE OBSTACLE Below, we first discuss the stereo vision results (Subsectio
AVOIDANCE IV-A), then explain the control algorithms involved in the

We apply the DelFly Explorer to a sparse obstacle avoicxperiment (Subsection IV—_B), and finally show the results
ance task. In the context of this task, we show the results 8f the experiment (Subsection IV-C).
the stereo vision processing, also when combined with suR— Stereo vision results
sampling. Avoidance of sparse obstacles is rather stfaight =~
ward, as is the employed control strategy. The main goal hereThe stereo vision system onboard the DelFly Explorer
is to show that the stereo vision system works in real-timgoes not yet have any wireless connection for sending
and can cope with the FWMAV'’s f|app|ng motion. images during ﬂlght Therefore, we show results of the stere
Specifically, the task of the FWMAV derives from the System in-hand, with the images sent via a serial connection
indoor competition of the IMAV 2018 which took place Figure 2 shows nine examples of stereo vision images and
on September 19, 2013. The FWMAV had to take oftheir corresponding disparity maps. The left column shows

autonomously and fly through a sparse obstacle field, keepititf €ft images, the center column the right images, and the
right column shows the disparity maps, in the intergall 0]

thttp: // waww. i mav2013. or g/ (bad pixels are also set to 0). Please remark that even though
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the camera is held in hand, the images already have motion
deformations and blur. The top six examples show results for
detecting poles as is the interest of our application, wiiée
bottom three examples show results in different situations
The line-wise matching strategy of the proposed algorithm B T T
. . .. Time in frames
can be clearly seen in the images by the striping effects. By
observing the detected poles 't. can .be noted that textu_ne qu?g. 4. Effect of subsampling on the aggregate values usetéplistacle
areas tend to have the same disparity as the poles. This effe@idance control algorithm. Top: total number of pixels wétidisparity
m|ght be reduced |n some cases by us|ng more Complé%her than 5 (Close plxels) Bottom: difference between nhenber of
| ith h f S . di . E close pixels in the left and right part of the image. The rasatle shown
algorithms t at_ p_er orm optlmlzatlon _'n more 're_Ct'O”W ~ for various subsampling ratios, ranging frdift (red) to 100% (green).
the task of avoiding poles this effect is not a real issuegesin
the pole will be avoided anyway. In general the background
will be assigned the same disparity as the pple and not theFigure 4 shows the effects of sub-sampling on the esti-
other way around. Exceptions occur in situations where the

contrast between the pole and the background is very Iovr\r/?ated number of pixels with a disparity larger than 5 (top)

. ) o a]nd on the difference between the left and the right image
The first six examples in Figure 2 show that the presence ?Dottom) As can be seen in the figure, all sampling ratios
the poles is clearly indicated. ' '

The effect of the pixel-based matching cost is iIIustrate&l)HOW the trend of the case of full sampling(0) - albeit

b le 9 of Fi > The d ation i trast i ith a variation that increases with a decreasing sampling
y example = ol Figure <. The dense vanation in contrast if; ., Surprisingly, this is even valid for a low samplingioa

combination with the low resolution images results in many o, (4 image lines out of 96 in our implementation)
small sequences and a large variation of disparity values. '

This effect might be reduced by using windows for calculat-
ing the matching cost but this increases computational l0oagl Flight Control Algorithms
as well as memory requirements.

The results from example 7 and 8 in Figure 2 are far In this subsection, we discuss the control algorithms used
from perfect, but the results are useful for our applicatiorfor take-off, height control, and obstacle avoidance. Take
Example 7 shows that the wall is fairly close to our camer&ff is performed with open-loop control. Before the control
even though the structure in the middle is the only featureequence starts, the barometer measurement at that moment
that provides sufficient texture. In the case of example & taken as a reference for a height of 0 m. The sequence
the algorithm is able to indicate that the bottom part of thetarts by setting the flap frequency above the trim setting,
images contain obstacles at at smaller range compared to #ieich results in a steep climb. After that the flap frequency
rest of the image. is reduced to a trim value (for trimmed horizontal flight)eaft

The control algorithm explained in the next subsectiotvhich closed loop control is performed on the height using
bases its decisions on the number of pixels with a disparitjie barometer feedback.
higher than 5 in the left and the right part of the image. Obstacle avoidance is performed on the basis of the
This implies that the detailed disparity maps are aggrelgaté.ongSeq’s stereo vision processing. First, the number of
into only two values. Hence, it makes sense to apply sulpixels with disparity larger than 5 are determined in thé lef
sampling for achieving higher processing frequenciesuféig and right part of the image. If the total number of such pixels
3 shows the number of processed image lines vs. the pns-lower than the empirically set threshold of 300, the DglFI
cessing times as measured on the STM32F405 (crosses). Wil continue to fly straight. Else it will turn toward the ®d
to be expected, this relation is roughly linear (dashed)linethat has fewer such pixels, with a fixed aileron deflection.
In order to process at frame rate, one can sample 32 ima§eb-sampling is applied with 32 image lines, so that the
lines (one third of the image). processing matches the frame rate of the digital cameras.

-1000

-2000

-3000

Difference in close pixels (left - right)




such as blur. The computational efficiency is enhanced with
the help of sub-sampling, at a negligible cost in accuracy.
The functioning of the system in the presence of flapping
motion has been illustrated with an application to a sparse
obstacle avoidance task, including autonomous take-aff an
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Fig. 5. Flight trajectories of the DelFly Explorer in an axei¢h three round
vertical poles (black circles), shown from above. The alistavoidance
trajectories are shown in blue. Three tracks show sucdessis (solid
blue). One track shows a trial where the Delfly hit two polethvits wings
(dash-dotted blue). Finally, one trajectory is shown whaeecontrol input
was inversed in order to fly toward poles (red dashed).
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[5

(6]

C. Experiment Y

The DelFly Explorer can successfully take off and fly 6]
through an obstacle field. Figure 5 shows the flight trajec-
tories from a test with four trials (blue lines). In three out
of four trials, the DelFly passes through the field without [°]
touching any obstacle. The trial with the dash-dotted line
shows a track where the DelFly passed through the obstag¢le]
field, but touched two poles with its wings, resulting in ghar
turns. In order to show that the vision actively determires t |1,
DelFly’s heading, we include a trial with a gain that inverts
the avoidance reactions (red dashed trajectory). As atresul
the DelFly targets the pole instead of avoiding it. [12]

D. More difficult environments

In order to test the DelFly Explorer in more difficult
environments, the avoidance algorithm proposed in [24] was,,
also implemented. This resulted in autonomous obstacle
avoidance with flight times up to nine minutes in different!®]
environments. Videos of these tests and from the tests
described in this paper can be found orfinNote that the [16]
method from [24] is able to handle other important situagion
such as flying toward a straight wall or a corner.

V. CONCLUSIONS

We have demonstrated the first light-weight flapping winélg]
MAV flying autonomously with onboard stereo vision pro-
cessing. Having the stereo vision processing onboard hiS]
been made possible by: (1) the light-weight electronics for
autopilot and stereo vision system, (2) the design improveyo)
ments regarding the motor and ailerons, and (3) the devel-
opment of a robust, computation and memory efficient, lin 1]
based stereo vision algorithm, named LongSeq. In particul
the quality of the disparity maps created by the stereo wisio
algorithm shows that it copes well with low visual texturel22]
(typical for indoor environments) and image deterioragionpg;

[13]

[17]

2http://ww. del fly.nl

height control.
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